Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Представьте себе приложение типа JIRA со сложным рабочим процессом. Для создания такого приложения требуется поддержка управления конечным автоматом. Если вы создаете свое приложение с помощью Django, Django FSM предоставляет вам готовую поддержку для управления конечным автоматом.
Предположим, что наше приложение имеет следующий рабочий процесс выполнение Task.
xZibit тоже рад, ведь здесь GIF вставлены в стикеры, чтобы быть вставлеными в GIF для КДПВ!
А теперь о подробностях реализации.
Всё началось с дискуссии в чатике Telegram-разработчиков о грядущей фиче
Зачем очередная статья про то, как писать нейронные сети с нуля? Увы, я не смог найти статьи, где были бы описаны теория и код с нуля до полностью работающей модели. Сразу предупреждаю, что тут будет много математики. Я предполагаю, что читатель знаком с основами линейной алгебры, частными производными и хотя бы частично, с теорией вероятностей, а также Python и Numpy. Будем разбираться с полносвязной нейронной сетью и MNIST.
Если выполнить вход на Spotify.me, то можно получить персонализированную сводку того, как Spotify понимает вас через музыку, которую вы слушаете на этом сайте Spotify. Это круто!
Я слушаю много музыки и люблю работать с данными, поэтому это вдохновило меня на попытку анализа моей коллекции музыки.
Мне было очень любопытно, существуют ли какие-то конкретные ингредиенты, из которых составлены хитовые песни. Что делает их крутыми? Почему нам нравятся хиты, и есть ли у них определённая «ДНК»?
Подборка примечательных файлов формата Jupyter Notebook по Machine Learning, Data Science и другим сферам, связанным с анализом данных. Эти блокноты Jupyter, будут наиболее полезны специалистам по анализу данных — как обучающимся новичкам, так и практикующим профи.
На русском языке довольно мало информации про то, как работать с ELF-файлами (Executable and Linkable Format — основной формат исполняемых файлов Linux и многих Unix-систем). Не претендуем на полное покрытие всех возможных сценариев работы с эльфами, но надеемся, что информация будет полезна в виде справочника и сборника рецептов для программистов и реверс-инженеров.
Подразумевается, что читатель на базовом уровне знаком с форматом ELF (в противном случае рекомендуем цикл статей Executable and Linkable Format 101).
Под катом будут перечислены инструменты для работы, описаны приемы для чтения метаинформации, модификации, проверки и размножения создания эльфов, а также приведены ссылки на полезные материалы.
Так получилось, что аж с 2012 года я разрабатываю open source браузерку, являясь единственным программистом. На Python само собой. Браузерка — штука не самая простая, сейчас в основной части проекта больше 1000 модулей и более 120 000 строк кода на Python. В сумме же с проектами-спутниками будет раза в полтора больше.
Недавно я очень удивился, когда обнаружил, что
>>> pow(3,89)
работает медленнее, чем
>>> 3**89
Я пытался придумать какое-либо приемлемое объяснение, но не смог. Я засек время выполнения этих двух выражений, используя модуль timeit из Python 3:
Почти все основные языки программирования имеют фреймворки для BDD тестирования, и Python не исключение. И по факту, у него их несколько! Итак, как их сравнить и какой из них лучший? Попробуем разобраться.
Эмпирически мы увидели, что регуляризация помогает уменьшать переобучение. Это вдохновляет – но, к сожалению, не очевидно, почему регуляризация помогает. Обычно люди объясняют это как-то так: в каком-то смысле, менее крупные веса имеют меньшую сложность, что обеспечивает более простое и действенное объяснение данных, поэтому им надо отдавать предпочтение. Однако это слишком краткое объяснение, а некоторые его части могут показаться сомнительными или загадочными. Давайте-ка развернём эту историю и изучим её критическим взглядом.
Нейросети — это та тема, которая вызывает огромный интерес и желание разобраться в ней. Но, к сожалению, поддаётся она далеко не каждому. Когда видишь тома непонятной литературы, теряешь желание изучить, но всё равно хочется быть в курсе происходящего.
В конечном итоге, как мне показалось, нет лучше способа разобраться, чем просто взять и создать свой маленький проект.
Можно прочитать лирическую предысторию, разворачивая текст, а можно это пропустить и перейти непосредственно к описанию нейросети.
Попробуем визуализировать данные по рекламным кампаниям, которые храняться в DataFrame.
Как обращаться к s3 из aws lambda
Эта статья предназначена для программистов, которые используют фреймворк Django. В ней рассматривается способы использования конфигурационных параметров проекта Django, а также плюсы и минусы различных подходов. В ней вы также найдете рекомендации, касающиеся инструментов, лучших практик и архитектурных решений, проверенные временем и проверенные успешными проектами.
Недавно мне довелось послушать доклад о хороших и плохих практиках программирования на языке Си. В нем, в частности, была затронута тема расшифровки забавно выглядящего программного кода (смайликов в Си). После чего последовал спор о целесообразности использования такого запутанного кода для проверки навыков кандидата на должность программиста при собеседованиях. Спор не привел к единому мнению.
Рассмотрим возможный вопрос по смайликам при собеседовании на должность, подразумевающую знание языка программирования Python.