Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Обработка естественного языка(Natural Language Processing — NLP) сегодня становится очень востребованной, так как людям несомненно проще общаться с машинами также, как они общаются с людьми.
Решил поделиться своим знанием, как можно быстро загрузить большое количество файлов в Google Colab с Google Drive.
Всем известно, что Google Colab отличная бесплатная платформа для обучения и экспериментов над Нейронными Сетями.
Оригинальная статья: Arpit Bhayani – Building Finite State Machines with Python Coroutines
Конечный автомат (Finite State Machine) – это математическая модель вычислений, которая моделирует последовательную логику. FSM состоит из конечного числа состояний, функций перехода, входных алфавитов, начального и конечного состояний. В области компьютерных наук автоматы используются при проектировании компиляторов, лингвистической обработки, пошаговых рабочих процессов, игрового дизайна, процедур протоколов (например, TCP / IP), программирования на основе событий, разговорного искусственного интеллекта и многих других.
Вспоминая Докинза, основную идею можно выразить так: если долго держать смерч над помойкой, то может собраться Боинг-747. Появление структуры из хаоса дуриком: перебирая и рекомбинируя всё подряд, из всех бессмысленных и беспорядочных процессов можно увидеть вполне осмысленные и упорядоченные. Если такие процессы каким-либо образом закрепляются и повторяются, то система, еще вчера представлявшая из себя броуновское движение, сегодня начинает выглядеть уже так, как будто ее поведение настроила невидимая рука, и что она совершает какие-то осмысленные с нашей точки зрения действия. При этом никакой руки и близко нет. Она настроила себя сама.
Это не техническая статья, в ней нет подробного анализа методов и теории. Просто как-то я увлекся машинным обучением и как и многие начинающие в этой теме люди, решил сделать торгового бота. Однако это выросло в нечто большее, чем просто тренировочный проект. Вот обо всем этом я и хочу рассказать.
На самом деле, задача, о которой хочется рассказать, проста до уныния по своей формулировке: нужно было визуализировать данные по продажам отдела e-commerce малой кровью, т.е., читай, практически даром.
Что под этим понимается? Корзины наших магазинов генерят постоянный поток данных об онлайн-продажах в разных регионах мира со всеми вытекающими: разные валюты, часовые пояса, налоги, типы клиентов, виды номенклатуры, заказов и т.д. На самом деле, то же самое генерит любой интернет-магазин, только, возможно, варианты параметров у заказов немного отличаются.