Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
В продолжение к первой статье, хочу на примере показать вариант работы с FPGA (ПЛИС) на python. В данной статье затрону подробнее аспект тестирования. Если фреймворк MyHDL позволяет людям, работающим на python, используя знакомый синтаксис и экосистему, заглянуть в мир FPGA, то опытным разработчикам ПЛИС смысл использования python не ясен. Парадигмы описания аппаратуры для MyHDL и Verilog похожи, а выбор в пользу определенного языка вопрос привычки и вкуса. За Verilog/VHDL выступает то, что на этих языках давно пишут прошивки, и по факту они являются стандартными для описания цифровой аппаратуры. Python, как новичок в этой сфере, может конкурировать в области написания тестового окружения. Значительную часть времени у FPGA разработчика занимает тестирование своих дизайнов. Далее я хочу на примере продемонстрировать как это делается в python с MyHDL. Допустим, есть задача описать на ПЛИС некое устройство, работающее с памятью. Для простоты возьму память, общающуюся с другими устройствами через параллельный интерфейс (а не через последовательный, например I2C). Такие микросхемы не всегда бывают практичны в виду того, что для работы с ними требуется много пинов, с другой стороны обеспечивается более быстрый и упрощенный обмен информации. Например отечественная 1645РУ1У и ее аналоги.
Рейтинги, статистика и немного исходного кода на Python под катом.
В последовательном программировании я постоянно сталкиваюсь с очевидным желанием не останавливать работу программы в момент, когда целью отдельных задач(процессов) является периодические действия — например, опрос значений датчиков, или передача данных по расписанию на сервер, или ввод/вывод большого объема данных. Самое простое, конечно, дождаться завершения периодического события и затем, не спеша, продолжить выполнять другие задачи.
Python компилируемый и интерпретируемый язык. Таким образом компилятор Python генерирует байткоды, а интерпретатор исполняет их.
Аудио-подкаст
Злата Обуховская (Teamlead в Nvidia, евангелист MoscowPython)
"В этой части докладов про внутренности питона мы посмотрим, как происходит выделение памяти, как работают счетчики ссылок, кэши объектов и сборка мусора, а также разберемся, причем тут GIL".
Слайды: http://www.moscowpython.ru/meetup/63/python-memory/
Цикл "Что внутри у Питона": https://www.youtube.com/playlist?list=PLv_zOGKKxVpi6BSAuySAtX5KyCa50PSCz
В данный момент занимаюсь задачей стриминга (и преобразования) данных. В некоторых кругах
такой процесс известен как ETL, т.е. извлечение, преобразование и загрузка информации.
Весь процесс включает в себя участие следующих сервисов Google Cloud Platform:
В первой части статьи я описал основы использования аннотаций типов. Однако несколько важных моментов остались не рассмотрены. Во-первых, дженерики — важный механизм, во-вторых иногда может оказаться полезным узнать информацию об ожидаемых типах в рантайме. Но начать хотелось с более простых вещей
Поделюсь рассказом о небольшом проекте: как найти в комментариях ответы автора, заведомо не зная кто автор поста.
Свой проект я начинал с минимальными знаниями по машинному обучению и думаю для специалистов тут не будет ничего нового. Этот материал в некотором смысле компиляция разных статей, в нем расскажу, как подходил к задаче, в коде можно найти полезные мелочи и приемы с обработкой естественного языка.