Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Возможность запускать язык специализированный на машинное обучение из Python экосистемы
Enabling native connection pooling in Django 5 gives me a 5.4x speedup.
Про NER написано немало, но этот материал носит прикладной характер. Статья будет полезна тем, кто интересуется NLP и ищет разные подходы для решения узкопрофильных задач, требующих извлечения сущностей из текста.
Обнаружение дронов (БПЛА) object-detection с использованием ИИ YOLOv12 и компьютерного зрения OpenCV.
Разрабатываем и растим «цифрового губера» - консультанта по вопросам государственного политического управления, демографии и миграции.
Мощный и быстрый модуль для обработки XML/HTML. Скачать можно по ссылке: https://pypi.python.org/pypi/lxml/
В этом топике я не пытаюсь доказать, что тесты бесполезны. Это скорее мои размышления вслух и личная попытка нащупать их реальную ценность. Некоторые идеи в процессе всё-таки зацепили - но скорее как частные случаи, а не что-то универсальное.
Импульсивные решения — главный враг трейдера. Эмоциональные сделки, увеличение позиций после потерь, торговля в ночное время — все это приводит к убыткам даже у опытных участников рынка. В этой статье я расскажу, как с помощью анализа данных и машинного обучения создать систему, которая заранее предупреждает о высоком риске принятия импульсивного решения.
Очередной выпуск англоязычного подкаста Python Bytes
Сегодня говорим о том, что в какой‑то момент словит почти каждый разработчик, особенно если вы не просто пишете скрипты, а строите проекты — будь то Django, Flask или кастомная архитектура с бизнес‑логикой в отдельных слоях. Речь про круговые импорты: они не объявляют о себе заранее, не фейлят весь проект громко и сразу, но подкрадываются исподтишка.
Расскажу про Python-библиотеку для гибкого чтения конфигураций с возможность переиспользования и переопределения элементов
В процессе очередного анализа сервисов, мы выяснили, что один из них, о котором пойдет речь в статье, отвечает довольно медленно, учитывая его особенности. И мы решили его ускорять, примерно на 25%. Я расскажу, какие действия мы предпринимали с командой, что помогло, а что оказалось не особенно полезно с точки зрения ускорения сервиса.
RFID-технология давно стала частью повседневности — мы встречаем её в проездных, пропусках, банковских картах, системах доступа и даже в метках на одежде. Но что на самом деле происходит, когда мы подносим метку к считывателю? Как устроена эта метка внутри? Какие данные она хранит, и как программа может их прочитать или изменить?