Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Сегодня я хотел бы поговорить о распаковке вложенных списков неопределённой глубины. Это достаточно нетривиальное занятие, поэтому я бы хотел рассказать тут о том, какие реализации есть, их плюсы и минусы и сравнение их производительности.
Однажды, исследуя глубины интернета, я наткнулся на видео, где человек обучает змейку с помощью генетического алгоритма. И мне захотелось так же. Но просто взять все то же самое и написать на python было бы не интересно. И я решил использовать более современный подход для обучения агентных систем, а именно Q-network. Но начнем с начала.
Предположим, ваша Python-программа оказалась медленной, и вы выяснили, что это лишь отчасти обусловлено нехваткой процессорных ресурсов. Как выяснить то, какие части кода вынуждены ожидать чего-то такого, что не относится к CPU?
«Консультант+» — справочная система для юристов, бухгалтеров и так далее. Работает стабильно, как часы. В этом посте предлагается немного эти часы настроить под свои нужды в части выдачи текста, а именно: взглянуть как можно переработать с помощью python текстовую информацию, которую выдает система. Попутно поработать с элементами текста, заявленными в заголовке.
Сегодня попробуем обучить свою собственную нейронную сеть, чтобы писала текст для песен. Обучающей выборкой будут тексты группы "Руки Вверх". Ничто не мешает чтобы поменять данные на тексты своих любимых групп. Для извлечения данных с веб-сайтов используем Python3 (модуль BeautifulSoup).