Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
О новом пакете, позволяющем настраивать глобальные клавиши на UNIX-подобных системах под X Window System.
Удивительно, на на хабре до сих пор нет поста о такой, весьма интересной, замене шеллу как xonsh (github), с моей точки зрения синтаксис всяких shell'ов ужасен и не вижу никаких оснований сохранять его в 21 веке, а Python, в свою очередь, обладает прекрасным синтаксисом и массой других преимуществ, поэтому, на мой взгляд, он и должен быть языком автоматизации по умолчанию, чего и пытаеся достичь xonsh.
Какое-то время использую xonsh, поэтому думаю, что могу рассказать о нём достаточно для того, чтобы начать пользоваться.
Применение аналитических алгоритмов на потоке данных сейчас одна из самых актуальных задач в области построения аналитических систем. Множество высокоточных предиктивных моделей, например, разработанных на показаниях с датчиков промышленных установок, уже готовы предупреждать серьезные аварии на производстве, но для этого их нужно выполнять на конечных устройствах («edge devices»), там, где показания с сенсоров поступают в реальном времени. Решить эту проблему и перенести аналитику в «онлайн» призван продукт SAS Event Stream Processing. В этой публикации хотелось поделится опытом его настройки на примере прикладной задачи – анализа изображений с видеокамер.
Возможно я плохо искал, но я не смог найти подробного руководства по созданию бота на python с применением фреймворка Django и подхода webhook, работающего на хостинге от российской компании. В большинстве материалов говориться о применении фреймворка Flask и использования бесплатных хостингов Heroku и PythonAnywhere. Опыт сообщества Хабр меня выручает, поэтому я решил в знак благодарности потратить время на написание данной статьи. Опишу полученный практический опыт, чтобы дать возможность всем кто в этом заинтересован сэкономить время и лучше понять как сделать бота на Python с применением фреймворка Django на своём хостинге, используя подход webhook.
После написания не совсем серьезной и не особо полезной в практическом ключе первой части меня слегка заглодала совесть. И я решил довести начатое до конца. То есть выбрать-таки реализацию нейросети для запуска на Rasperry Pi Zero W в реальном времени (конечно, насколько это возможно на таком железе). Прогнать её на данных из реальной жизни и осветить на Хабре полученные результаты.
Осторожно! Под катом работоспособный код и немного больше котиков, чем в первой части. На картинке коТ и коД соответственно.