Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Leveraging dataclasses for Django custom command arguments centralizes default settings and URL query construction, streamlining code and reducing potential mismatches.
Неустанно растущий объем информации требует создания новых носителей. Данная потребность уже давно привела к тому, что ученые с особым интересом рассматривают ДНК в качестве идеального (по мнению многих) носителя информации. Проблема в том, что доступ к данным на молекулах является крайне сложным, дорогим и длительным процессом. Ученые из Техасского университета в Остине (США) разработали новый метод кодирования информации в синтетических молекулах, который может сталь более выгодной и эффективной альтернативой биомолекул. Как именно работает данный метод, что лежит в его основе, и что удалось с его помощью сделать? Ответы на эти вопросы мы найдем в докладе ученых.
Работа с файлами в Python кажется простой — open, read, write. Но на практике, особенно в системах с высокими требованиями к отказоустойчивости, стабильности и логированию, за банальными строками кода может скрываться целый мир проблем.
А теперь о том, что происходило в последнее время на других ресурсах.
Когда автотесты начинают тянуться как улитка, страдают все. CI медлит, разработчики косо смотрят на отчёты, а я вместо багов натыкаюсь на тайминги. Особенно это бесит в UI‑тестах — там каждый шаг может тормозить, но с ходу это не видно.
Want to test a function with dozens of variants? I'll show you how to organize test cases in a CSV file and connect them to pytest using the pytest-csv-params plugin.
При работе с внешними интеграциями мы часто реализуем базовую реакцию на ошибки. В большинстве случаев достаточно ограничиться response.raise_for_status(), а детальную обработку оставить на потом. Нередко мы не управляем ошибками. Не знаем в действительности ни как поведет себя внешняя система, ни какие типы этих ошибок следует от нее ожидать. В самом деле, бывает непросто учесть все возможные крайние случаи и обеспечить соответствующее ответное действие.
Наша команда решает задачу поиска оптимального расположения даркстора (место, где хранятся продукты, а также собираются заказы). Зона покрытия даркстора — радиус в пару километров, и количество их постоянно увеличивается. Мы хотим уметь размещать новый даркстор так, чтобы как можно больше людей получали заказы за минимальное время доставки.В этой статье мы расскажем, как выбираем локации для новых дарксторов: определимся с постановкой задачи, погрузимся в контекст проекта и покажем, как можно анализировать сотни тысяч разных точек на карте в секунду.
В этой статье расскажу о том, как можно повысить эффективность хранения данных за счет уменьшения их дублирования. Разберем, что из себя представляют Slowly Changing Dimensions-2 (далее SCD-2) таблицы и самостоятельно реализуем на PySpark алгоритм сохранения данных в них. Попутно поговорим о том, как находить изменения в любой таблице, даже если отсутствуют поля для выбора изменившихся записей, и научимся получать из созданной SCD-2 таблицы срезы на требуемую дату в прошлом.
Scikit-learn — это одна из основных Python-библиотек для машинного обучения. В 2025 году в библиотеку добавили несколько важных обновлений: доработали работу с пайплайнами, подключили полную поддержку pandas API, упростили контроль за экспериментами.
Встроенная командная строка в Windows не устраивает многих разработчиков. У нее скудный функционал, нет «запоминания» и многих других функций, который были бы полезны её пользователям. Поэтому я решил попробовать сделать свою «консоль», с возможностью создания своих модулей для расширения функционала. Для этого, на языке программирования Python я начал писать своё CLI‑приложение, которое упрощает работу с консолью. И что из этого вышло? Узнать продолжение
Я всегда разделял два этапа: разработку торговых идей (логика стратегии) и реализацию механизма исполнения (отправка заявок, автотрейдинг). Сначала - бэктестинг и базовая оптимизация, и только потом - реальная торговля.
Вы обожаете Emacs, но вам необходимо работать с Jupyter ноутбуками? Данная статья расскажет еще об одном способе, как их подружить.
Говорят, что невозможно по-настоящему возненавидеть кого-то, если сначала не полюбил его. Не знаю, справедливо ли это в целом, но это определённо описывает моё отношение к NumPy.NumPy — это ПО для выполнения вычислений с массивами на Python. Оно невероятно популярно и очень сильно повлияло на все популярные библиотеки машинного обучения, например, на PyTorch. Эти библиотеки во многом имеют те же самые проблемы, но для конкретики я рассмотрю NumPy.
Я расскажу, как провела синтетическое исследование без респондентов, но с результатом, используя AutoGen — фреймворк от Microsoft, который позволяет моделировать диалоги между ИИ-агентами.Здесь не будет сложного кода. Только пошаговая инструкция, минимум настроек и максимум пользы, чтобы вытащить из AI внятные сценарии поведения пользователей.
Концепция проста: создаем поле для рисования, распознаем написанный текст с учетом отступов и пытаемся его «запустить». С точки зрения архитектуры проект представляет собой веб-приложение. Фронтенд — JavaScript для работы «пера», а также исполнения кода в браузере. Бэкенд — Python для распознавания рукописного ввода.