Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Учить детей программировать с помощью мобильных игр – это уже классика. Собрала для вас подборку 12 игр и каждую протестировала. Есть варианты для дошкольников и школьников. Приложения работают в офлайн-режиме, поэтому можно отключить интернет и спокойно оставить малыша с телефоном. Он ничего случайно не купит и не зайдет, куда не нужно. И заниматься можно в любом месте, даже на даче с плохой связью!
Многопользовательская Counter-Strike: Global Offensive наполнена различными раскрасками для оружия разной степени редкости и привлекательности. Некоторые игроки гонятся за уникальными скинами, а другие выбирают на основе субъективного вкуса. Помимо официальной торговой площадки Steam, скины можно купить на сторонних ресурсах, доверие к которым невелико. Но в обоих случаях нет фильтра по цвету.
Вручную перебирать все варианты раскраски для всех видов вооружений очень долго. К счастью, проблему можно автоматизировать. В статье я покажу, как извлечь необходимые ресурсы из игры, и еще раз поговорю про сложность определения схожести цветов.
В этой статье я расскажу о том, как мы столкнулись с проблемой периодического обновления Python-зависимостей, тестировали решение с полной их фиксацией, ошибались, и в итоге перешли на Poetry.
Штош. В этой статье я расскажу вам, как создать Telegram бота, который получает текущую погоду по IP адресу. Мы будем использовать язык Python и асинхронную библиотеку для взаимодействия с Telegram Bot API - aiogram.
Нет, эта статья не очередной обзор, на парадигму автора. Это статья о сравнении двух стандартов PEP8 и "Чистого кода". Вместе с вами я посмотрю чем отличаются эти два стандарта между собой, в чём их сходство. Полученные знания углубят понимание фундаментальных принципов программирования и возможно повлияют на стиль оформления кода.
Pandas — это мощная библиотека для анализа данных, API которой обладает широкими функциональными возможностями. Этот API позволяет решить любую задачу, связанную с обработкой данных, несколькими способами. Некоторые из подходов к решению задач лучше других. Часто бывает так, что пользователи pandas узнают о подходах, не отличающихся особой эффективностью, привыкают к ним и постоянно их применяют. Этот материал посвящён разбору четырёх анти-паттернов pandas и рассказу о приёмах работы, которые стоит использовать вместо них.Автор черпал вдохновение из многих источников, ссылки на которые даны в статье. В частности — из замечательной книги Effective Pandas.
Поскольку Airflow — это на 100% код, знание основ Python - это все, что нужно, чтобы начать писать DAG. Однако написание эффективных, безопасных и масштабируемых DAG требует учета некоторых моментов, специфичных для Airflow. В этом разделе мы рассмотрим некоторые передовые методы разработки DAG, которые максимально используют возможности Airflow. В целом, большинство лучших практик, которые мы здесь рассматриваем, относятся к одной из двух категорий
Представьте, что с одной стороны у вас есть видео на YouTube с интересными моментами из матча по Dota 2. А с другой стороны база данных всех матчей по Dota 2. Как для видео найти соответствующую запись в БД? Этой задачей мы сегодня и займемся.
Суффиксное дерево (Suffix Tree, ST) – это структура данных, которая позволяет "проиндексировать" строку за линейное время от её длины, чтобы потом быстро находить подстроки (за время О(длина искомой подстроки)).
Расчет и анализ корреляционного отношения средствами Python.
Я часто пользуюсь функциями для работы с большими данными. Они позволяют упросить и ускорить работу. Некоторые я нашел на просторах интернета, другие написал сам. Сегодня хочу поделиться четырьмя из них, может кому-то будет полезно.
Относительная доступность методов секвенирования ДНК и большое количество доступной в открытых источниках генетической информации сделала актуальной разработку нейронных сетей, предназначенных для анализа цепочек ДНК и поиска корреляций между признаками и геномной последовательностью. В статье мы рассмотрим основы кодирования генетической информации и обсудим дополнение от исследовательской команды генетики Google Nucleus для Tensorflow, который позволяет считывать основные форматы кодирования генетической информации и представлять их в виде набора данных, которые могут быть проанализированы с использованием тензорных графов на основе Tensorflow.
Это вторая статья из серии введения в «Нейронные сети для начинающих». Здесь и далее мы постараемся разобраться с таким понятием — как обработка графических данных, визуализация данных, а также на практике решим пару простых задач.
Этот текст — первый в цикле историй про эксплуатацию, дебаг и жизнь в обнимку с консолью и мануалом. Искушенного инженера они вряд ли удивят, но для начинающих могут оказаться полезными. Среди них есть короткие и длинные, линейные и запутанные. Постараюсь рассказывать поэтапно, чтобы вы пережили все с точки зрения участника и построили собственные гипотезы. Заодно поговорим об используемых инструментах и попробуем найти во всем этом какую-нибудь мораль.
Эта статья только первая из цикла "прохожу тестовые задания". Подобными заметками я хочу показать другим начинающим программистам, с чем им придется столкнуться при собеседованиях на работу. Сам я изучаю питон (и не только) уже порядка 4 лет, но это только теория с практикой на своих пет-проектах, что, как оказалось, с реальным программированием не имеет ничего общего. Итак, хватит лирики.
Первая часть - Все, что вам нужно знать об Airflow DAGs — Основы и расписания
Добро пожаловать в полное руководство по Apache Airflow DAG, представленное командой Astronomer. Эта электронная книга охватывает все, что вам нужно знать для работы с
DAG, от строительных блоков, из которых они состоят, до рекомендаций по
их написанию, динамической генерации, тестированию, отладке и многому
другому. Это руководство, написанное практикующими для практикующих.
Качественная визуализация данных не менее важна для анализа данных, чем методы математической обработки. На сегодняшний день существуют десятки (если не сотни) библиотек для визуализации наборов данных на Python, но иногда в них встречаются уникальные возможности и хотелось бы иметь возможность объединить различные инструменты в единой панели. В статье мы рассмотрим основы библиотеки panel для реализации реактивной модели интерактивных визуализаций и попробуем объединить визуализации из разных библиотек в одном dashboard.