Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Сохраняем большие объемы данных, а потом читаем.
В данной статье хочу поделиться с вами историей о том, как одна и та же архитектура модели принесла сразу две победы в соревнованиях по машинному обучению на платформе topcoder с интервалом месяц.
PSON (Pandora Simple Object Notation) – бинарный формат упаковки, позволяющий переводить простые типы данных, массивы и списки в последовательность байт (простую строку). PSON придуман и разработан для использования в свободной распределённой информационной системе Pandora как более простая альтернатива бинарному формату BSON.
О том как использовать Manager для поиска по нескольким моделям
В начале февраля Павел Дуров анонсировал, что у Telegram появился так называемый Telegram Login Widget. Проще говоря, теперь любой желающий может встроить авторизацию на своем сайте через Telegram, наряду с уже удобными способами входа через привычные для всех Google, Twitter, Facebook и так далее.
В этой заметке я хочу рассказать и наглядно показать как это сделать, используя Django. Исходный код свободно доступен в моем репозитории на GitHub. Пользуйтесь на здоровье.
Некоторое время назад решил разобраться, что такое стеганография, в чем её смысл и какая она бывает. И спустя несколько ссылок наткнулся на интересную статью про хэш-стеганографию. Возник вопрос — а почему бы не попробовать реализовать такой способ передачи на практике? Для начала — в виде proof of concept.
Я хочу рассказать про метод оптимизации известный под названием Hessian-Free или Truncated Newton (Усеченный Метод Ньютона) и про его реализацию с помощью библиотеки глубокого обучения — TensorFlow. Он использует преимущества методов оптимизации второго порядка и при этом нет необходимости считать матрицу вторых производных. В данной статье описан сам алгоритм HF, а так же представлена его работа для обучения сети прямого распространения на MNIST и XOR датасетах.
Недавно стало известно, что Google (корпорация добра) занимается анализом видеоизображений с военных дронов. Этот проект называется Project Maven и был предложен в апреле 2017 года. Что интересно, сотрудничество с Google в этом проекте организовывал сам Эрик Шмидт, бывший председатель совета директоров Alphabet, и нынешний председатель Совета по оборонным инновациям DIB.
В этой статье я хочу поделиться несколькими удобными способами организации вашего проекта на рабочем (даже продакшен) сервере.
Я работаю, в основном, с Python/Django стеком, поэтому все примеры будут, в первую очередь, применительно к этому набору. Также ключевые технологии: Ubuntu (17.10), Python3 (3.6).
Скрытые марковские модели (Hidden Markov Models) с давних времен используются в распознавании речи. Благодаря мел-кепстральным коэффициентам (MFCC), появилась возможность откинуть несущественные для распознавания компоненты сигнала, значительно снижая размерность признаков. В интернете много простых примеров использования HMM с MFCC для распознавания простых слов.
После знакомства с этими возможностями появилось желание опробовать этот алгоритм распознавания в музыке. Так родилась идея задачи классификации музыкальных композиций по исполнителям. О попытках, какой-то магии и результатах будет рассказано в этом посте.
Сегодня только ленивый не говорит (пишет, думает) про машинное обучение, нейросети и искусственный интеллект в целом. Всего лишь в прошлом году ML сравнили с подростковым сексом — все хотят, но никто не занимается. Сегодня все озабочены тем, что ИИ нас оставит без работы. Хотя, судя по последним исследованиям Gartner, можно успокоиться, так как к 2020 году благодаря ИИ появится больше рабочих мест, чем ликвидируется. Так что, дорогой друг, учи ML, и будет тебе счастье.
На волне всеобщего интереса к чат-ботам в частности и системам диалогового интеллекта вообще я какое-то время занимался связанными с этой темой проектами. Сегодня я хотел бы выложить в опенсорс одну из написанных библиотек. Оговорюсь, что в первую очередь я специализируюсь на алгоритмических аспектах разработки и поэтому буду рад конструктивной критике решений кодерского характера от более сведущих в этом вопросе специалистов.
Тепловыделяющий элемент (ТВЭЛ) — главный конструктивный элемент активной зоны гетерогенного ядерного реактора, содержащий ядерное топливо [1].
В ТВЭЛах происходит деление тяжелых ядер урана 235 или плутония 239, сопровождающееся выделением тепловой энергии, которая затем передаётся теплоносителю.
ТВЭЛ должен обеспечить отвод тепла от топлива к теплоносителю и препятствовать распространению радиоактивных продуктов из топлива в теплоноситель.
Поэтому расчёт температурных полей в ТВЭЛах является важной задачей проектирования ядерного реактора.
В данной публикации приведена методика расчета распределения температуры для стержневого осесимметричного твэла, набранного из таблеток оксида урана.
Recently попался мне случайно на глаза один эпизод из недавно модного сериала «Мистер Робот». Не будучи сильно знакомым с проектом, я всё же знал о связанной с ним массивной пиар-кампании (которая вроде как даже проводила нечто вроде ARG-мероприятий), поэтому когда я услышал условие занимательного CTF-таска (из жанра bin/exploitation), представленного в сюжете одной из серий, я подумал, что скорее всего, этот таск существовал в действительности. Обратившись ко всемирной паутине, я подтвердил своё предположение, и, так как задача не очень сложная (не успеет наскучить в рамках одной хабр-статьи), но крайне оригинальная и интересная, сегодня займемся её разбором.
Cut, cut, cut!
Иногда мы хотим поделиться с друзьями частью какого то видео на YouTube — время концентрации внимания в современной реальности снижено до предела, и если скидывать ссылку на ролик(даже с таймкодом начала) с комментарием «смотреть с 21:51 по 24:55» — велика вероятность, что видео просмотрено не будет.
Кроме того — куски видео могут потребоваться для монтажа своих роликов — и довольно неудобно скачивать ради нескольких секунд весь ролик и искать/вырезать нужную часть в программе для монтажа.
Как загружать часть видео YouTube при помощи ffmpeg — под катом