Собрали в одном месте самые важные ссылки
читайте авторский блог
Расскажу о том, как решал одну из наиболее интересных задач в разминке Яндекс Алгоритмы 2023 г. Интересной я называю ее потому, что: 1) решал я кратно дольше, чем предыдущие 6 задач из разминки вместе взятые; 2) именно в этой задаче я проникся мощью префиксных сумм, и применением их для двумерных массивов.
Django’s dev server, uvicorn, and others support hot-loading by restarting the service. For large programs this can be time consuming. This article shows you how to track just what needs to be reloaded and minimize the refresh to only those modules.
Пишем AI-помощника для анализа художественных произведений. С помощью языковой модели для анализа текста и небольшой обвязки для визуализации полученного структурированного ответа генерируем:- граф связей между героями- хронологию событий- карту мест действия
Механизм использования одноразовых и подписных запросов может быть эффективным способом защиты запросов API от подделки. В то же время применяемые меры безопасности затрудняют проведение тестирования на проникновение.
Вам интересно, какие индексы используются больше или меньше? Какие не используются вовсе? Какие таблицы и индексы самые большие? Очень легко создать такие диаграммы. Это и красиво, и полезно.
Работая в современном коммерческом SOC'е я впервые столкнулся с масштабными средствами автоматизации, заточенными под самые разные инфраструктуры, которые позволяют экономить колоссальное количество времени и предотвращать тысячи киберинцидентов каждый день.
Уже много лет я преподаю машинное обучение, программирование и анализ данных. Подготовка материалов лекций и общение со студентами доставляют огромное удовольствие, а вот рассылки, оформление ведомостей занимают большое количество времени и вызывают лишь скуку. Поэтому я решила автоматизировать эту часть работы с помощью Python. Также наши сотрудники из учебного офиса тратят значительное количество времени, вручную создавая документы и рассылки. Приведенные ниже скрипты могут быть полезны не только в преподавательской, но и в разнообразной менеджерской работе.
В профессии инженера-металловеда мне ежедневно приходится анализировать микроструктуру материалов и неметаллические включения. До недавнего времени я, как и многие, делал это вручную: окуляр микроскопа, шкалы, подсчёты, Excel. Утомительно и долго. На фоне постоянного потока образцов нагрузка на глаза и внимание становится ощутимой.
Узнайте, как создать парсер Telegram на Python с использованием Telethon для осинта и сбора данных об угрозах. Пошаговое руководство с практическими примерами.
Понадобилось мне проанализировать сайт на предмет попадания его под фильтр Гугла, причем с историческими данными. Первым делом начал гуглить - чекер фильтров Гугла и вот это вот все. Естественно - в интернетах куча решений, но есть небольшое но...
А теперь о том, что происходило в последнее время на других ресурсах.
A quick-start guide to create a web map with images, using the Python-based Django web framework, leveraging its GeoDjango module, and Pillow, the Python imaging library, to extract GPS information from images.
В этой статье расскажу, как порядок в заметках помогает лучше усваивать материал, кому подойдет Цеттелькастен или подобные методы и что лучше — простые конспекты или структурированные заметки.
Обычно на нашей конференции PiterPy доклады посвящены Python-разработке. Но закрывающий доклад — отдельная история: тут впору оторваться от конкретных строчек кода и расширить кругозор, не привязываясь к определённому языку.
Сегодня сравним два подхода к А/Б тестированию: байесовский и частотный. Обсудим сложности в интерпретации p-value. Посмотрим, как можно учитывать дополнительную информацию через априорное распределение. Остановим тест раньше времени и решим проблему подглядывания.
Зачастую устранение пропусков — обязательный этап предварительной обработки временных рядов. Эта небольшая работа обусловлена стремлением создать инструмент оперативного подбора модели для импутации/вменения определенного вида пропусков в определенных временных рядах.
В этой статье я расскажу про swagger-coverage-tool — инструмент, который показывает, насколько полно ваши тесты покрывают API по спецификации Swagger (OpenAPI). Всё работает автоматически, без изменений в логике тестов. Поддерживаются httpx и requests, отчёт генерируется в один клик. Идеально, если вы хотите объективно видеть, что действительно проверяют ваши API автотесты.
В мире данных и аналитики, где каждый день генерируются огромные объемы информации, создание единой платформы для работы с данными становится неотъемлемой частью успешной стратегии бизнеса.