Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Специалисты по анализу данных часто оценивают свои прогностические модели с точки зрения точности и погрешности, но редко спрашивают себя:
«Способна ли моя модель спрогнозировать реальные вероятности?»
Однако точная оценка вероятности чрезвычайно ценна с точки зрения бизнеса (иногда она даже ценнее погрешности). Хотите пример?
По сравнению со старшими товарищами, EasyOCR очень молодой проект, но с большими амбициями. В статье приводится сравнение качества работы, удобства работы, особенности установки и производительности трёх инструментов.
Одна из популярных задач в аудиторской практике – распознавание текста с документов. Казалось бы, инструменты для решения этой задачи давно известны, всё работает и ничего больше особо и не хочется: бесплатно и руками – Tesseract, платно и легко в использовании – FineReader.
Не так давно участвовал в проекте, где мы применяли методы байесовского моделирования для ритейлинговой сети. Тема непростая и интересная. Так как проект под NDA, решил на примере похожего гипотетического проекта показать, как мы решали поставленные перед нами задачи.Также подробно расскажу об основах Байесовского моделирования. Ну и бонусом, тем кто дочитает до конца и захочет углубиться в эту тему – «куча» ссылок.
В стандартной библиотеке Python есть множество замечательных модулей, которые помогают делать ваш код чище и проще, и functools определенно является одним из них. В этом модуле есть множество полезных функций высшего порядка, которые можно использовать для кэширования, перегрузки, создания декораторов и в целом для того, чтобы делать код более функциональным, поэтому давайте отправимся на экскурсию по этому модулю и посмотрим, что он может нам предложить.
Многие проекты на Django начинаются просто: есть база данных и к приложению, которое крутится на сервере, идут обращения. Например, так начиналась Dodo IS (информационная система компании Додо Пицца, где работал автор сегодняшней статьи). Но если использовать Django из коробки, можно натворить много бед и встретить пачку антипаттернов. Возможно, вы встречали такое на старых legacy-проектах.
Люди делятся на два типа: одни летают за тысячу рублей из Питера во Владивосток, другие сутками скрупулезно высчитывают маршруты через Казахстан, отказываются от багажа, соглашаются на микро-кресла и в итоге все равно получают космический ценник.
Почему так происходит, как формируются цены на авиабилеты и как в итоге покупать их дешевле — рассказываю под катом.
Насколько мне известно, в большинстве русскоязычных тестировщиков скорости печати используется метрика CPM, наткнувшись на следующее видео, мне стало интересно посмотреть на свои показатели метрики WPM.
По окончанию тестирования пользователю показывается результат написанный на картинке. И мне она показалась не совсем корректной.
Для проведения проверки мне необходимо было установить адреса нескольких сотен объектов недвижимости. Проблема в том, что адреса были написаны в разных частях документов, документы имели различные форматы, и сам адрес также мог быть написан разнообразными способами.
27-28 августа 2019 года во Владивостоке и Приморском крае произошли массовые оползни. К счастью, обошлось без жертв. Однако, материальные потери оказались существенными: разбитые автомобили, перекрытые дороги, поврежденные здания и детские площадки. Оползни сошли в момент прохождения мощного циклона с обильными дождями. Мы робко предположили что "осадки виновны", распаковали методы классической статистики и приступили к исследованию.
RuGPT-3 - AI-модель для русского языка, которая умеет писать тексты. Она может генерировать истории, стихи и новости, которые люди не могут отличить от настоящих. Похожая модель лежит в основе Балаболы от Яндекса. В этой статье мы описываем способ генерации длинных текстов без потери смысла на примере модели ruGPT-3 Large. Мы назвали этот метод Cross-Fold Generation. С ним можно генерировать последовательности более 2000 токенов с сохранением идеи текста.
Мы пообщались с двумя людьми, от которых непосредственно зависит будущее Python. На наши вопросы ответили Core-developer community on Google Cloud Дастин Инграм и Director at Python Software Foundation Кэрол Виллинг. Их ответы о том, чего не хватает языку и как он будет развиваться дальше, вы узнаете, заглянув под кат.
Допустим, вам потребовалось на языке программирования python, построить трёхмерную модель некоторого объекта, затем визуализировать его, или подготовить файл для печати на 3D принтере. Существует несколько библиотек, помогающих в решении этих задач. Поговорим о том, как строить трёхмерные модели из точек, граней и примитивов в python. Как выполнять элементарные приемы 3D моделирования: перемещение, поворот, объединение, вычитание и другие.
Я перечислил пять возможностей Python, которые разработчики должны использовать для улучшения своего кода и экономии времени.
Встречайте свежий выпуск дайджеста полезных материалов из мира Data Science & Machine Learning.
Реалии современного мир таковы, что аналитику всё чаще приходится прибегать к помощи новейших алгоритмов машинного обучения для выявления тех или иных отклонений в работе исследуемой системы. Наибольшей востребованностью пользуются алгоритмы компьютерного зрения для обработки фото и видео информации, а также техники работы с естественными языками для анализа текстов. Однако не стоит забывать о такой важной сфере, как работа с аудио, о которой и пойдет речь в этой статье.
В декабре 2020 года я завершил работать в научном институте и сразу же увлёкся задачей добычи данных из соцсетей, в частности из Инстаграма. Прежде я работал только с готовыми данными, поэтому мне всегда было интересно, как эти данные можно добывать. За несколько дней до Нового Года я написал достаточно базовую статью про то как парсить Инст. В первых числах января мне написал заказчик и попросил сделать для него масштабный парсер инстаграма, который был бы способен делать более 10.000 запросов в сутки.
Меня зовут Иван Маслов, я работаю в Страховом Доме ВСК на должности руководителя направления RPA. Расскажу Вам об опыте использования роботов, и о том как упростить работу с legacy системами. Уверен, будет интересно всем: и тем, кто скептически относится к роботам, и тем, кто хочет побольше о них узнать.
Данная статья является продолжением публикации, в которой я рассказывал о созданной мной программе, собирающей все доступные данные по брокерскому счёту клиента Тинькофф Инвестиций через API и формирующей большую Excel таблицу со всеми подробностями, которые вы не всегда найдёте в личном кабинете.
Цель проекта — повысить прозрачность при работе с инвестициями, чтобы держать все свои финансовые потоки под контролем, что должно сделать инвестирование более осознанным, а следовательно, более эффективным.
Этот пост предназначен в первую очередь для сотрудников телекома, админов и новичков в разработке, впервые столкнувшихся с необходимостью отправить snmp-запросы к какому-нибудь коммутатору и разобрать полученный ответ.
Разберем основы работы с библиотекой pysnmp на примере модуля, который принимает в качестве параметров oid-ы, ip и RO-community коммутатора и отдает человекопонятный json с ответами на эти oid-ы и ifAdminStatus, ifOperStatus, ifInOctets, ifOutOctets и ответ на запрос о типах линков