Собрали в одном месте самые важные ссылки
читайте авторский блог
Этот текст содержит предложения, как сделать джанго орм (а вместе с ним и сам джанго) асинхронным.
Классификация методом поиска ближайших соседей - относительно простой для понимания метод классификации, суть которого подробно рассматриваться в этой статье не будет.
Метод предполагает наличие алгоритма поиска ближайших соседей. Можно использовать разные алгоритмы. Самый простой, но при этом не эффективный по времени алгоритм - полный перебор всех соседей для поиска ближайших. Существуют так же методы поиска, называемые KDtree и BallTree.
Представьте себя на месте изучающего русский язык иностранца. Ударение станет одним из ваших самых страшных ночных кошмаров. Во-первых, оно не описывается каким-то простым набором правил, и чаще всего правильное произношение приходится просто запоминать. Во-вторых, оно обычно не обозначается в текстах, что практически сводит на нет относительную близость русской орфографии к произношению - без ударений правильно прочитать текст с незнакомыми словами иностранец все равно не сможет. В-третьих, неправильное ударение сильно меняет фонетический образ слова для русского человека, и из-за одной ошибки вас могут просто не понять.
Расскажу о проделанном пути, чтобы найти идеальный, для моих целей, инструмент конфигурирования проекта и о создании легковесной библиотеки bestconfig, впитавшей в себя преимущества изложенных подходов.
Использование микросервисной архитектуры для построения корпоративных приложений взамен традиционной монолитной — популярный тренд в веб-разработке.
Я не ставил целью настоящей статьи познакомить читателей с концепцией микросервисов. Желающим получить общее введение в тему могу порекомендовать заглянуть сюда.
В этой статье речь пойдёт об архитектуре данных, где необходимо хранить статусы записей, получая информацию об их актуальности.
Одна из первых задач, которую мне поручили здесь — проверить качество географических данных. Формально эта задача больше относится к анализу данных, чем к системному анализу. Но меня она очень заинтересовала, ведь требовался не только анализ, но и исследование и, по возможности, реализация решения, а для меня это самое интересное в работе.
Нейронные сети очень мощны для выполнения предиктивного анализа и решения аналитических задач. Они широко используются для классификации данных, чтобы обнаруживать закономерности и делать прогнозы. Бизнес-кейсы варьируются от классификации и защиты данных клиентов до классификации текста, поведения потребителей и многих других задач.
Именованные сущности – это слово или сочетание, обозначающее объект либо явление определенной категории. Говоря о таких объектах в контексте анализа данных, чаще всего имеют в виду ограниченный набор видов: имя (псевдоним), дата, должность (роль), адрес, денежная сумма, название организации и др.
Расположение данных объектов в строгой структуре документа формирует отдельное признаковое пространство визуальной стороны страницы и может повысить качество классификации (или кластеризации). Предлагаем разобраться, как можно получить и использовать координаты именованных сущностей в документе.
Каждый день мы пишем и актуализируем большое количество тестов для API. Поэтому сегодня я хочу обсудить тему автоматической генерации таких тестов и поделиться с сообществом нашими решениями и опытом.
Для начала давайте подумаем, что приходит вам в голову, когда вы слышите слово «автотесты».
Впервые я столкнулся с техническими собеседованиями еще в 2012 году, когда искал свою первую работу в IT. Я выслушал условия задачи, нацарапал решение на доске, ответил на несколько вопросов и ушел, весь перепачканный черный маркером. В то время я совершенно не представлял, как выглядит весь этот процесс с другой стороны; всё, что мне оставалось – в тревоге ждать результатов и надеяться, что я вписался в неизвестные мне критерии тех, кто проводил собеседование.
У Яндекса много самописных сервисов для внутренних задач: Яндекс.Формы, Яндекс.Диск, трекер, календарь. Со временем их решили использовать не только внутри компании, но и за ее пределами. Так появилась платформа Яндекс.Коннект.
Большинство сервисов Коннекта построено на Python V3. В качестве web-фреймворка используется Django, реже Flask и Tornado, а новые чаще пишутся на FastAPI. Сервисы, как и базы PostgreSQL, MySQL и MongoDB, живут в облаке. В качестве очереди сообщений почти везде используется Celery с MongoDB в качестве брокера. Он и стал проблемой.
У Яндекс.Дзен нет готового API, чтобы агрегировать статистику привычным для аналитиков и маркетологов образом. Чтобы собрать данные, нужно пройти 8 шагов: зайти на zen.yandex.ru, перейти в кабинет, затем в раздел «Статистика», потом на вкладку «Кампании», выбрать период и нажать на «Отчеты». Затем в сформировавшихся отчете Excel перейти на вкладку «Статистика кампаний по дням», выбрать нужную кампанию и создать сводную таблицу.
В первую очередь, материал ориентирован на аналитиков, которые манипулируют разумными объемами данных, необходимых для решения практических задач. ETL из Бигдаты в котором перекачиваются сотни Тб ежесуточно живет своей отдельной жизнью.
Специалисты по анализу данных часто оценивают свои прогностические модели с точки зрения точности и погрешности, но редко спрашивают себя:
«Способна ли моя модель спрогнозировать реальные вероятности?»
Однако точная оценка вероятности чрезвычайно ценна с точки зрения бизнеса (иногда она даже ценнее погрешности). Хотите пример?
По сравнению со старшими товарищами, EasyOCR очень молодой проект, но с большими амбициями. В статье приводится сравнение качества работы, удобства работы, особенности установки и производительности трёх инструментов.
Одна из популярных задач в аудиторской практике – распознавание текста с документов. Казалось бы, инструменты для решения этой задачи давно известны, всё работает и ничего больше особо и не хочется: бесплатно и руками – Tesseract, платно и легко в использовании – FineReader.
Не так давно участвовал в проекте, где мы применяли методы байесовского моделирования для ритейлинговой сети. Тема непростая и интересная. Так как проект под NDA, решил на примере похожего гипотетического проекта показать, как мы решали поставленные перед нами задачи.Также подробно расскажу об основах Байесовского моделирования. Ну и бонусом, тем кто дочитает до конца и захочет углубиться в эту тему – «куча» ссылок.
В стандартной библиотеке Python есть множество замечательных модулей, которые помогают делать ваш код чище и проще, и functools определенно является одним из них. В этом модуле есть множество полезных функций высшего порядка, которые можно использовать для кэширования, перегрузки, создания декораторов и в целом для того, чтобы делать код более функциональным, поэтому давайте отправимся на экскурсию по этому модулю и посмотрим, что он может нам предложить.
Многие проекты на Django начинаются просто: есть база данных и к приложению, которое крутится на сервере, идут обращения. Например, так начиналась Dodo IS (информационная система компании Додо Пицца, где работал автор сегодняшней статьи). Но если использовать Django из коробки, можно натворить много бед и встретить пачку антипаттернов. Возможно, вы встречали такое на старых legacy-проектах.
Люди делятся на два типа: одни летают за тысячу рублей из Питера во Владивосток, другие сутками скрупулезно высчитывают маршруты через Казахстан, отказываются от багажа, соглашаются на микро-кресла и в итоге все равно получают космический ценник.
Почему так происходит, как формируются цены на авиабилеты и как в итоге покупать их дешевле — рассказываю под катом.