Собрали в одном месте самые важные ссылки
читайте авторский блог
В предыдущей статье я описывал реализацию выбора пользователем места жительства при регистрации в моем telegram боте, который я создавал вдохновившись идеей «Телефонного эфира». В этой же статье я опишу интеграцию бота с Asterisk.
Думаю, многие в напряженных дискуссиях в интернете сталкивались с обвинением людей в том, что они боты, тролли и проплачены Кремлем, Киевом или Вашингтоном. Но как действительно выявить таковых или просто людей пытающихся активно донести своё мнение до остальных?
С тех пор, как нейронные сети начали набирать популярность, большинство инженеров стали решать многие из задач ПО в области Public Safety методами deep learning. Несмотря на то что у нейросетей нет конкурентов в вопросах обнаружения (detection) и распознавания (identification) объектов, всё же они не могут похвастаться способностью анализировать и рассуждать, а лишь создают закономерности, которые не всегда можно понять или интерпретировать.
Мы придерживаемся такого мнения: для трекинга нескольких объектов более эффективными будут интерпретируемые и предсказуемые подходы, такие как, например, метод вероятностной ассоциации данных (probabilistic data association approach).
Классификация данных на основе контента — это открытая задача. Традиционные системы предотвращения потери данных (DLP) решают эту проблему путем снятия отпечатков с соответствующих данных и мониторинга конечных точек для снятия отпечатков. Учитывая большое количество постоянно меняющихся ресурсов данных в Facebook, этот подход не только не масштабируется, но и неэффективен для определения того, где находятся данные. Эта статья посвящена сквозной системе, построенной для обнаружения чувствительных семантических типов в Facebook в масштабе и автоматического обеспечения хранения данных и контроля доступа.
В нескольких предыдущих заметках данной серии мы уже упоминали понятие дифференциального рендеринга. Сегодня пришло время разъяснить что это такое и с чем это едят.
Часть II. Узнаем, как писать агентов, обрабатывающих стрим событий из kafka, а так же как написать команды (обёртка на click).
Представляю вашему вниманию перевод статьи "Pythonで0からディシジョンツリーを作って理解する (3. データ分析ライブラリPandas編)".
В нашем департаменте Airflow играет роль оркестратора процессов обработки больших данных, с его помощью мы загружаем в Hadoop данные из внешних систем, обучаем ML модели, а также запускаем проверки качества данных, расчеты рекомендательных систем, различных метрик, А/Б-тестов и многое другое.
Сложно найти на Хабре человека, который не слышал бы про нейронные сети. Регулярные новости о свежих достижениях нейронных сетей заставляют удивляться широкую публику, а также привлекают новых энтузиастов и исследователей. Привлеченный поток специалистов способствует не только еще большим успехам нейронных моделей, но и приводит к развитию инструментов для более удобного использования Deep Learning подходов. Помимо всем известных фреймворков Tensorflow и PyTorch активно развиваются и другие библиотеки, нередко более гибкие, но менее известные. Эта статья является переводом одного из постов neptune.ai и освещает самые интересные инструменты для глубокого обучения, представленные на конференции по машинному обучения ICLR 2020.
Представьте лог на 2,5 гигабайта после неудачной сборки. Это три миллиона строк. Вы ищете баг или регрессию, которая обнаруживается на миллионной строке. Вероятно, найти одну такую строку вручную просто невозможно. Один из вариантов — diff между последней успешной и упавшей сборкой в надежде на то, что баг пишет в журналы необычные строки. Решение Netflix быстрее и точнее LogReduce — под катом.
Продолжаю публикацию решений, отправленных на дорешивание машин с площадки HackTheBox.
В данной статье очень много всего. Посмотрим как для удобства совместить Burp Suite и sqlmap, узнаем как получить пользователей домена имея доступ к MSSQL, эксплуатируем уязвимость в Visual Studio Code, блокируем AMSI, выполняем AS-REP Roasting для получения учетных данных и повышаем привилегии из группы Server Operators. А в качестве демонстрации новой уязвимости ZeroLogon, захватим эту же машину другим путем меньше чем за 5 минут.
Не так давно мне пришлось работать над бэкендом высоко нагруженного проекта, в котором нужно было организовать регулярное выполнение большого количества фоновых задач со сложными вычислениями и запросами на сторонние сервисы. Проект асинхронный и до того, как я пришёл, в нём был простой механизм крон-запуска задач: цикл с проверкой текущего времени и запуск групп корутин через gather — такой подход оказался приемлем до момента, пока таких корутин были десятки и сотни, однако, когда их количество перевалило через две тысячи, пришлось думать об организации нормальной очереди задач с брокером, несколькими воркерами и прочим.
В этой статье я расскажу про опыт проведения городской школьной олимпиады по программированию.
Совсем недавно у нас вышла подробная книга о работе с хранилищем данных Google BigQuery. Сегодня мы решили вновь кратко затронуть эту тему и опубликовать небольшой кейс о выполнении запросов к данным BigQuery на Python и R.
Сообщите в комментариях, интересует ли публикация на тему машинного обучения с применением BigQuery
Меня зовут Борис и в этом труде я поделюсь с тобой опытом проектирования и реализации сервиса массовых рассылок, как части объемлющей системы оповещения студентов преподавателями (далее также — Ада), которую тоже я осуществляю.
Сегодня я расскажу вам о моем опыте с ВК, найденных багах, об отношении к пользователям и, собственно, как получить аудиозаписи вк, пользуясь "не багами а фичами", как меня заверяли сотрудники данной корпорации. Итак, приступим!
OpenCV — это open source библиотека компьютерного зрения, которая предназначена для анализа, классификации и обработки изображений. Широко используется в таких языках как C, C++, Python и Java.
Руководство, описанное в этой статье, поможет вам в тестировании веб-интерфейсов. Мы создадим простое надежное решение для тестирования веб-интерфейса с помощью Python, pytest и Selenium WebDriver. Мы рассмотрим стратегии построения хороших тестов и паттерны написания правильных автоматизированных тестов. Конечно же, разработанный проект по тестированию сможет послужить хорошей основой для создания собственных тест-кейсов.
Представляем настраиваемую и интерактивную структуру дерева решений, написанную на Python. Эта реализация подходит для извлечение знаний из данных, проверки интуитивного представления, улучшения понимание внутренней работы деревьев решений, а также изучение альтернативных причинно-следственных связей в отношении вашей проблемы обучения. Она может использоваться в качестве части более сложных алгоритмов, визуализации и отчётов, для любых исследовательских целей, а также как доступная платформа, чтобы легко проверить ваши идеи алгоритмов дерева решений.