Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Одна из проблем обучения нейронных сетей — переобучение. Это когда алгоритм научился хорошо работать с данными, которые он видел, а на других он справляется хуже. В статье мы рассказываем, как попытались решить эту проблему, совместив обучение градиентным спуском и эволюционным подходом.
В конце прошлого года, я написал статью, о том как был заинтригован возможностью распознавания объектов на изображениях с помощью нейронных сетей. В той статье мы с помощью PyTorch классифицировали на видео либо ягоду малину, либо ардуино-подобный контроллер. И не смотря на то, что PyTorch мне понравился, обратился я к нему потому, что не смог с наскока разобраться с TensorFlow. Но я пообещал, что ещё вернусь к вопросу распознавания объектов на видео. Кажется пришло время сдержать обещание.
В данной статье мы попробуем на своей локальной машине дообучить уже готовую модель в Tensorflow 1.13 и Object Detection API на нашем собственном наборе изображений, а потом используем её для распознавания ягод и контроллеров, в видеопотоке веб-камеры с помощью OpenCV.
Привет от ODS. Мы откликнулись на идею tutu.ru поработать с их датасетом пассажиропотока РФ. И если в посте Milfgard огромная таблица выводов и научпоп, то мы хотим рассказать что под капотом.
Что, опять очередной пост про COVID-19? Да, но нет. Нам это было интересно именно с точки зрения математических методов и работы с интересным набором данных.
Скользящее окно (Moving Windows)
В заголовке я привел дословный перевод. Если кто меня поправит, и другой термин более применим — то спасибо.
Смысл скользящего окна– с каждым новым значением функция пересчитывается за заданный период времени. Этих функций большое количество. Для примера: rolling.mean(), rolling.std(), которые чаще всего и используют при анализе движения акций. rolling.mean() — это обычная скользящая средняя, которая сглаживает краткосрочные колебания и позволяет визуализировать общую тенденцию.
Давайте представим, что нам нужно запустить футбольный мяч на орбиту Земли. Никакие ракеты не нужны! Хватит горы, высотой 100 километров и недюжинной силы. Но насколько сильно нужно пнуть мяч, чтобы он никогда больше не вернулся на Землю? Как отправить мяч в путешествие к звёздам, имея только грубую силу и знание небесной механики?
Python, хоть и мощный, но всего лишь инструмент, который позволяет писать выразительный самодокументируемый код, но не гарантирует этого, как не гарантирует этого и соблюдение PEP8. Когда наш, казалось бы, простой интернет-магазин на Django начинает приносить деньги и, как следствие, накачиваться фичами, в один прекрасный момент мы понимаем, что он не такой уж и простой, а внесение даже элементарных изменений требует все больших и больших усилий, а главное, что эта тенденция все нарастает. Что случилось, и когда все пошло не так?
Сейчас программирование все глубже и глубже проникает во все сферы жизни. А возможно это стало благодаря очень популярному сейчас python’у. Если еще лет 5 назад для анализа данных приходилось использовать целый пакет различных инструментов: C# для выгрузки (или ручки), Excel, MatLab, SQL, и постоянно “прыгать” туда сюда вычищая, сверяя и выверяя данные. То сейчас python, благодаря огромному количеству прекрасных библиотек и модулей, в первом приближении благополучно заменяет все эти инструменты, а в связке с SQL так вообще “горы свернуть можно”.
Будучи одним из самых популярных языков 21-го века, Python, безусловно, обладает множеством интересных функций, которые стоит изучить подробно. Три из них будут рассмотрены сегодня, каждая — теоретически, а потом и на практических примерах.
В процессе подготовки к курсу «Основы компиляторов» для студентов 4-го курса я изучал различные эзотерические языки программирования. Вот хорошая статья на эту тему. В статье самым интересным мне показался язык Befunge (Крис Пресс, 1993 год), особо отмечу три его особенности
В этой статье я покажу как решить одну из проблем, возникающих при использовании распределенных очередей задач — регулирование пропускной способности очереди, или же, более простым языком, настройка ее rate limit'a. В качестве примера я возьму python и свою любимую связку Celery+RabbitMQ, хотя алгоритм, который я использую, никак не зависит от этих инструментов и может быть реализован на любом другом стэке.
Репозиторий моделей Open Model Zoo библиотеки OpenVINO содержит много самых разных глубоких нейронных сетей из области компьютерного зрения (и не только). Но нам пока не встретилось GAN моделей, которые генерировали бы новые данные из шума. В этой статье мы создадим такую модель в Keras и запустим ее в OpenVINO.
С помощью этого руководства мы с помощью Keras, TensorFlow и глубокого обучения научимся на собранном вручную датасете из рентгеновских снимков автоматически определять COVID-19.
Как и многие другие, я искренне беспокоюсь относительно COVID-19. Я заметил, что постоянно анализирую своё состояние и гадаю, подхвачу ли болезнь и когда это произойдёт. И чем больше я об этом беспокоюсь, тем больше это превращается в болезненную игру разума, в которой симптоматика сочетается с ипохондрией
Несмотря на всю важность и популярность анализа данных печальная ситуация вокруг вируса COVID-19 еще больше подогрела интерес к этой области. Последние пару месяцев правительства и отдельные люди во всем мире пытаются собрать данные о COVID-19 и построить модели, которые помогут предсказать эффект от вируса на нашу жизнь и экономику, а также понять как спасти жизни и бороться с кризисом.
В наше время большинство детей знакомится с миром программирования через создание проектов на платформе scratch.mit.edu Создание проектов происходит путем соединения разноцветных блоков без ввода кода с клавиатуры (вводим только значения переменных).
Однако, дети взрослеют, им становится тесно в мире Scratch, и в этот момент им можно предложить несколько путей развития.
Сегодня мы предлагаем вам перевод статьи, затрагивающей не самую обсуждаемую тему: компиляцию кода в Python, а именно: работу с абстрактным синтаксическим деревом (AST) и байт-кодом. Притом, что Python является интерпретируемым языком, такие возможности в нем чрезвычайно важны с точки зрения оптимизации. О них мы сегодня и поговорим.
Вы когда-нибудь задумывались, как именно компилятор оптимизирует ваш код, чтобы он работал быстрее? Хотите узнать, что такое абстрактное синтаксическое дерево (AST) и для чего оно может использоваться?
Хочу рассказать вам, как мы писали и внедряли сервис для мониторинга качества данных. У нас есть множество источников данных: данные с финансовых рынков, торговая активность наших клиентов, котировки и многое другое. Все это генерирует миллиарды записей в день в наших процессах. Полнота и консистентность торговых данных — критический компонент бизнеса Exness.
Если вам близки проблемы обеспечения качества данных и вам интересно, как мы решили эту задачу у себя, то добро пожаловать под кат.
В этой статье попробуем получить выписки из ФГИС ЕГРН с помощью python (selenium) сразу по нескольким объектам недвижимости, решим капчу с помощью сервиса anticaptcha, используя его api. При встрече с капчей нейросети трогать не будем, так как они могут показаться сложнее в реализации, да и процент «успешных разгадываний» капч с их помощью пока ниже.
Динамическое создание моделей или полей к уже существующей модели в ORM Django редко встречаемая задача, но иногда специфика бизнеса требует ее реализации. К примеру может возникнуть необходимость получение данных из внешней БД и при этом сами данные могут иметь либо очень большее количество полей (более 100), либо иметь постоянно меняющиеся поля. Но вы должны быть осторожны, если пойдете по этому пути, особенно если ваши модели настроены на изменение во время выполнения. В этой статье я рассмотрю ряд вопросов, которые следует учитывать при создание динамических моделей.
В этой статье я расскажу как за 30 минут настроить среду для машинного обучения, создать нейронную сеть для распознавания изображений a потом запустить ту же сеть на графическом процессоре (GPU).
Для начала определим что такое нейронная сеть.