Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Сегодняшний пост про фракталы попался в рамках проработки темы Python, в частности, Matplotlib. Последуем примеру автора и предупредим, что в посте много тяжелой анимации, которая может даже не работать на мобильном устройстве. Зато как красиво.
Экспериментируя с простейшей задачкой машинного обучения я обнаружил, что интересно было бы подобрать в довольно широком диапазоне значения 18 гиперпараметров одновременно. В моём случае всё было на столько несложно, что задачку можно было бы взять и грубой компьютерной силой.
Обучаясь чему-то мне бывает очень интересно изобрести какой-нибудь велосипед. Иногда получается реально придумать что-то новое. Иногда обнаруживается, что все придумано до меня. Но даже если я всего лишь повторю путь пройденный за долго до меня, в награду я часто получаю понимание глубинных механизмов алгоритмов их возможностей и внутренних ограничений. К чему и вас приглашаю.
Сегодня мы все чаще используем приложения для обмена мгновенными сообщениями (Facebook Messenger, WhatsApp, Telegram и т. д.) и устройства в виде голосовых помощников (Amazon Echo и Google Home и т. д.), помогающих получать моментальный ответ на запрос. Поэтому современные компании закладывают значительный бюджет в разработку искусственных помощников, чтобы предоставлять своим пользователям наилучший клиентский сервис, когда это необходимо. В этой статье мы расскажем, как использовали технологию искусственного интеллекта DeepPavlov для расширения возможностей обслуживания клиентов компании Интерсвязь.
Когда мы делаем большую серию снимков, часть из них получается нечеткими. С такой же проблемой столкнулась крупная автомобильная компания. Часть фотографий при осмотре авто получались размытой, что могло негативно влиять на продажи.
Некачественные снимки напрямую снижают прибыль.
При написании приложений на Python, для работы с базами данных часто используются объектно-реляционные мапперы (ORM). Примерами ORM являются SQLALchemy, PonyORM и объектно-реляционный маппер, входящий в состав Django. При выборе ORM довольно важную роль играет её производительность.
Как-то раз стало интересно, какие темы выделит LDA (латентное размещение Дирихле) на материалах «Живого Журнала». Как говорится, есть интерес — нет проблем.
Для начала немного про LDA на пальцах, вдаваться в математические подробности не будем (кому интересно — почитает). Итак, LDA — является одним из наиболее распространенных алгоритмов для моделирования тем. Каждый документ (будь то статья, книга или любой другой источник текстовых данных) представляет собой смесь тем, а каждая тема представляет собой смесь слов.
Оригинальная статья: PAWEŁ FERTYK – Getting started with Django middleware
Django поставляется с множеством полезных функций. Одним из них является механизм middleware (переводится как промежуточное программное обеспечение). В этом посте я кратко объясню, как работает middleware и как начать писать свой собственный.
Исходный код, включенный в этот пост, доступен на GitHub.
Работая над голосовым помощником, который упоминается в предыдущей статье, понял, что просто не могу с вами не поделиться прекраснейшей библиотекой FuzzyWuzzy.
Если коротко, то благодаря ей существует возможность произвести нечёткое сравнение строк без каких-либо страданий.
Итак, вашему вниманию представляется перевод страницы Time series forecasting из раздела руководств tensorflow: ссылка. Мои дополнения вместе с иллюстрациями к переводу нацелены помочь с пониманием основных идей в одном из самых интересных направлений ML и эконометрики в целом – прогнозировании временных рядов.
Подготовил для вас подборку самых интересных находок из опенсорса за март 2020.
Учимся находить лучшее для своего разбойника при помощи программирования. Также разбираемся, не водит ли нас программа «за нос».
Как бы сильно не развивались технологии, за развитием всегда тянется вереница устаревших подходов. Это может быть обусловлено плавным переходом, человеческим фактором, технологическими необходимостями или чем-то другим. В области обработки данных наиболее показательными в этой части являются источники данных. Как бы мы не мечтали от этого избавиться, но пока часть данных пересылается в мессенджерах и электронных письмах, не говоря и про более архаичные форматы. Приглашаю под кат разобрать один из вариантов для Apache Airflow, иллюстрирующий, как можно забирать данные из электронных писем.
В первой части статьи мы рассмотрели основы работы с утилитой SIP, предназначенной для создания Python-обвязок (Python bindings) для библиотек, написанных на языках C и C++. Мы рассмотрели основные файлы, которые нужно создать для работы с SIP и начали рассматривать директивы и аннотации. До сих пор мы делали обвязку для простой библиотеки, написанной на языке C. В этой части мы разберемся, как делать обвязку для библиотеки на языке C++, которая содержит классы. На примере этой библиотеки мы посмотрим, какие приемы могут быть полезны при работе с объектно-ориентированной библиотекой, а заодно разберемся с новыми для нас директивами и аннотациями.
Недавно прочитал статью о том, что акции-аутсайдеры (те, что максимально упали в цене за месяц) индекса Мосбиржи имеют бОльшие перспективы роста, нежели в среднем по индексу.
Эта статья описывает страдания начинающего процесс изготовления самоходной платформы на базе МК esp8266 с micropython, управляемой через встроенный веб-сервер.
Иногда во время работы над проектом на языке Python возникает желание использовать библиотеку, которая написана не на Python, а, например, на C или C++.
Как можно расширить синтаксис Python и добавить в него необходимые возможности? Прошлым летом на PyCon я постарался разобрать эту тему. Из доклада можно узнать, как устроены библиотеки pytest, macropy, patterns и как они добиваются таких интересных результатов. В конце есть пример кодогенерации с помощью макросов в HyLang — Lisp-образного языка, бегущего поверх Python.
На определённом этапе разработки своей игры я осознал, что мне нужна система диалогов с лицами-аватарами. Поэтому я решил создать генератор лиц на основе знаменитой игры Papers, Please.
Сортировку кучей (она же — пирамидальная сортировка) на Хабре уже поминали добрым словом не раз и не два, но это всегда была достаточно общеизвестная информация. Обычную бинарную кучу знают все, но ведь в теории алгоритмов также есть:
n-нарная куча; куча куч, основанная на числах Леонардо; дерамида (гибрид кучи и двоичного дерева поиска); турнирная мини-куча; зеркальная (обратная) куча; слабая куча; юнгова куча; биномиальная куча; и бог весть ещё какие кучи…
Пока наши новинки печатаются в типографии, а офис сидит на удаленке, мы решили поделиться отрывком из книги Пола и Харви Дейтелов «Python: Искусственный интеллект, большие данные и облачные вычисления»