Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Сова – это нано-фреймворк, который можно встроить в другие фреймворки.
Идея делать сайты на Питоне с прорисовкой на React не нова. Есть замечательный фреймворк https://plot.ly/products/dash/, зачем еще что-то делать?
Объясняю: Сова не рассчитана на разработку сайтов. Это инструмент для замены толстых клиентов на приложения, работающие через браузер (десктопные приложения).
Для улучшения возможности отображения информации о пользователях в административной панели сайта, реализовал возможность отображения аватаров пользователей, как в специальной модели UserProfile, которая имеет One-To-One отношение к модели User, так и в самой модели User добавил отображение аватарки через inline форму.
Это руководство для тех, кто уже написал классное приложение на Python, но еще не писал для
них тесты.
Тестирование в Python — обширная тема с кучей тонкостей, но не обязательно все усложнять. В несколько простых шагов можно создать простые тесты для приложения, постепенно наращивая сложность на их основе.
В этом руководстве вы узнаете, как создать базовый тест, выполнить его и найти все баги, до того как это сделают пользователи! Вы узнаете о доступных инструментах для написания и выполнения тестов, проверите производительность приложения и даже посмотрите на проблемы безопасности.
За 2 года мне посчастливилось посетить более сорока собеседований в качестве кандидата на позицию «Middle Python-разработчик». На последних пятнадцати собеседованиях я понял необходимость задавать вопросы работодателю, чтобы в дальнейшем не столкнуться с неожиданностями по работе. Помимо базовых вопросов, которые обычно задают кандидаты работодателю я решил сформировать свои вопросы. Когда я задавал эти вопросы на собеседованиях, я получал самые различные реакции со стороны собеседующих. Кто-то говорил, что я дотошный, кто-то считал эти вопросы слишком банальными, а кто-то даже начинал нервничать(краснеть) и немедленно прерывать собеседование с нелепой отговоркой о том, что у него совещание. В этой статье я хотел бы рассказать об общих идеях посещения таких мероприятий а также привести мои 22 вопроса, которые я задаю на собеседовании работодателю.
Каждый из нас воспринимает тексты по-своему, будь это новости в интернете, поэзия или классические романы. То же касается алгоритмов и методов машинного обучения, которые, как правило, воспринимают тексты в математической в форме, в виде многомерного векторного пространства.
Статья посвящена визуализации при помощи t-SNE рассчитанных Word2Vec многомерных векторных представлений слов. Визуализация позволит полнее понять принцип работы Word2Vec и то, как следует интерпретировать отношения между векторами слов перед дальнейшем использованием в нейросетях и других алгоритмах машинного обучения. В статье акцентируется внимание именно на визуализации, дальнейшее исследование и анализ данных не рассматриваются. В качестве источника данных мы задействуем статьи из Google News и классические произведения Л.Н. Толстого. Код будем писать на Python в Jupyter Notebook.
Представьте себе небольшой конвейер. По нему едут товары или какие-то детали, на которых важно распознавать текст (возможно, это некий уникальный идентификатор, а может, и что-то более интересное). Хорошим примером будут посылки. Работу конвейера дистанционно контролирует оператор, который отслеживает неполадки и в случае чего решает проблемы. Что может ему в этом помочь? Девайс на платформе Android Things может быть неплохим решением: он мобильный, легко настраивается и может работать через Wi-Fi. Мы решили попробовать использовать технологии ABBYY и узнать, насколько они подходят для таких ситуаций — распознавания текста в потоке на “нестандартных устройствах” из категории Internet of Things. Мы сознательно будем упрощать многие вещи, так как просто строим концепт
Внутреннее устройство словарей в Python не ограничивается одними лишь бакетами и закрытым хешированием. Это удивительный мир разделяемых ключей, кеширования хешей, DKIX_DUMMY и быстрого сравнения, которое можно сделать ещё быстрее (ценой бага с примерной вероятностью в 2^-64).
Если вы не знаете количество элементов в только что созданном словаре, сколько памяти расходуется на каждый элемент, почему теперь (CPython 3.6 и далее) словарь реализован двумя массивами и как это связано с сохранением порядка вставки, или просто не смотрели презентацию Raymond Hettinger «Modern Python Dictionaries A confluence of a dozen great ideas». Тогда добро пожаловать.
Есть 100500 способов и инструментов создать простого serverless чат-бота для телеграм. А наш все-равно будет проще, хотя бы по числу кликов в интерфейсе. Сам бот будет написан на Python, а выполнятся будет на serverless движке Swifty.
Здесь я попытался показать на практике, что собой представляют некоторые важные концепции из области создания компиляторов. Есть вероятность, что подобные 15-минутные завершенные истории могут оказаться неплохим способом погружения в сложные темы. Только хорошо бы не пассивно читать то, что представлено ниже, а еще и проверять код в работе.
Если первый опыт окажется успешным, то в будущем вас могут ожидать и другие 15-минутные "зарисовки" по тематике компиляторов.
Веб-фреймворк Django подробно документирован на официальном сайте: там и теория, и справочная информация, и руководства для новичков. Однако, несмотря на качество, далеко не всем новичкам эта документация приходится по душе. Что ж, у вас есть два пути. Первый — записаться на обучающие курсы. Второй — в очередной раз заглянуть на полки интернет-магазинов. Этим мы сегодня и займёмся.
Это tutorial по библиотеке TensorFlow. Рассмотрим её немного глубже, чем в статьях про распознавание рукописных цифр. Это tutorial по методам оптимизации. Совсем без математики здесь не обойтись. Ничего страшного, если вы её совершенно забыли. Вспомним. Не будет никаких формальных доказательств и сложных выводов, только необходимый минимум для интуитивного понимания. Для начала небольшая предыстория о том, чем этот алгоритм может быть полезен при оптимизации нейронной сети.
Представьте себе инструмент, с помощью которого вы можете трансформировать любые данные в… любые данные.
Самый доступный пример — Изображения. Что если я хочу получить картинку определенного размера и поставить где-нибудь водяную марку (тоже определенного размера).
А сегодня предлагаем вам почитать сугубо практическую статью о наиболее насущных видах утечек оперативной памяти, которую написал Нельсон Ильхейдж (Nelson Elhage) из компании Stripe.
Итак, у вас получилась программа, на выполнение которой тратится чем дальше — тем больше времени. Вероятно, вам не составит труда понять, что это верный признак утечки в памяти.
Однако, что именно мы понимаем под «утечкой в памяти»? По моему опыту, явные утечки в памяти делятся на три основные категории, для каждой из которых характерно особое поведение, а для отладки каждой из категорий нужны особые инструменты и приемы. В этой статье я хочу описать все три класса и подсказать, каким образом правильно распознать, с
которым из классов вы имеете дело, и как найти утечку.
Вопрос физического развития собственных детей всегда актуален. Младшему сыну исполнилось три года, захотелось помимо прогулок подыскать ему занятия со спортивным уклоном. Поскольку он проявляет интерес к различным видам транспорта, выбор естественным образом пал на беговел. А насмотревшись зажигательных видео, как дети постарше трюкачат на беговелах, я решил немного более подробно исследовать вопрос. Вооружившись IMU от Амперки на 10 степеней свободы, Raspberry Zero W с блоком питания и 40 строками кода на Питоне я пошел в беговелошколу. Что из этого вышло — смотрите под катом )
Сортировки слиянием работают по такому принципу:
Сегодня предлагаю погрузиться в один из удобнейших веб-фреймворков в связке c Python под названием Dash. Появился он не так давно, пару лет назад благодаря разработчикам фреймворка plotly. Сам Dash является связкой Flask, React.Js, HTML и CSS.
В один прекрасный день разные каналы в телеграмме начали кидать ссылку на крэкмишку от ЛК, Успешно выполнившие задание будут приглашены на собеседование!. После такого громкого заявления мне стало интересно, насколько сложным будет реверс. О том, как я решал этот таск можно почитать под катом (много картинок).
Полгода назад я начал изучать машинное обучение, прошел пару курсов и получил некоторый опыт в этом. Затем, видя самые разные новости о том, какие нейронные сети крутые и много могут делать, я решил попробовать изучить их. Начал читать книгу Николенко про глубокое обучение и в ходе чтения у меня появилось несколько идей (которые не новы для мира, но для меня представляли огромный интерес), одна из которых — создать нейросеть, которая генерировала бы для меня арт, который казался бы классным не только мне, "отцу рисующего ребёнка", но и другим людям. В этой статье я постараюсь описать путь, который я прошел для того, чтобы получить первые удовлетворяющие меня результаты.
Представьте: телефонный звонок в три часа ночи, вы берете трубку и слышите крик о том, что больше никто не пользуется вашим продуктом. Страшно? В жизни, конечно, все не так, но если не уделять должное внимание проблеме оттока пользователей, можно оказаться в похожей ситуации.
Мы уже подробно рассказали, что такое отток: углубились в теорию и показали, как превратить нейросеть в цифрового оракула. Специалисты студии Plarium Krasnodar знают еще один способ предсказания. О нем мы и поговорим.
В данной статье рассматриваются наиболее интересные преобразования, которые выполняет цепочка из двух транспайлеров (первый переводит код на языке Python в код на новом языке программирования 11l, а второй — код на 11l в C++), а также производится сравнение производительности с другими средствами ускорения/исполнения кода на Python (PyPy, Cython, Nuitka).