Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Однажды мне пришлось заняться разработкой Web-приложения для корпоративного использования на Python+Django. И самым первым вопросом, который пришлось решать — это прозрачная авторизация на сайте или Single Sign-On (SSO).
Хотя о вопросе реализации SSO для Django написано немало статей, однако для того, чтобы реализовать то, что мне было необходимо, пришлось затратить относительно много времени. Поэтому, чтобы избавить некоторых из вас от возможных долгих поисков информации и ее сборки в работающую схему, предлагаю вам свой мануал, как сделать прозрачную авторизацию в приложении Django с использованием учетных записей Active Directory.
Зима — это по истине прекрасное время года. Но именно зимой я всегда задумываюсь о том, что встаю и ухожу на работу, а затем и возвращаюсь с работы, не видя солнечного света. Сегодня мне захотелось визуализировать данные о восходе и заходе солнца и соотнести их со столь привычным для многих распорядком дня (рабочие часы и время бодрствования). Для работы мы будем использовать Python (pandas + matplotlib). Посмотрим, что из этого получилось.
Первые недели нового года самое подходящее время для того, чтобы уютно устроившись у окошка, вспомнить что же нам принес год ушедший.
А принес он нам два новых стандарта шифрования. Российский стандарт ГОСТ Р 34.12-2015 (блочный шифр Кузнечик). И украинский ДСТУ 7624:2014 (блочный шифр Калина). Холодными, зимними вечерами нельзя упускать такой удачный повод покодить. Под катом краткое описание алгоритмов и их реализация на Python. А чтобы новым шифрам было веселее, разбавим их общество белорусским СТБ 34.101.31-2007.
Hello, Habr! Недавно мы получили от “Известий” заказ на проведение исследования общественного мнения по поводу фильма «Звёздные войны: Пробуждение Силы», премьера которого состоялась 17 декабря. Для этого мы решили провести анализ тональности российского сегмента Twitter по нескольким релевантным хэштегам. Результата от нас ждали всего через 3 дня (и это в самом конце года!), поэтому нам нужен был очень быстрый способ. В интернете мы нашли несколько подобных онлайн-сервисов (среди которых sentiment140 и tweet_viz), но оказалось, что они не работают с русским языком и по каким-то причинам анализируют только маленький процент твитов. Нам помог бы сервис AlchemyAPI, но ограничение в 1000 запросов в сутки нас также не устраивало. Тогда мы решили сделать свой анализатор тональности с блэк-джеком и всем остальным, создав простенькую рекурентную нейронную сеть с памятью. Результаты нашего исследования были использованы в статье “Известий”, опубликованной 3 января.
На сегодняшний день две мои самые любимые темы — SQLite и key-value базы данных. И в этот раз я пишу сразу про обе: этот пост посвящён Python-обёртке для используемого в SQLite 4 key-value хранилища на основе LSM.
Разобравшись с исходным кодом SQLite 4 и крохотным заголовочным файлом LSM, я написал python-lsm-db (документация).
Libre/Open Office предоставляют возможность работы с офисом через UNO API. Для того, чтобы можно было обратиться к офису необходимо запустить его в режиме прослушивания. Например: soffice --accept="socket,host=localhost,port=2002;urp;" Данный подход вполне логичен и понятен с точки зрения разработчиков офиса, но несет ряд неудобств. В частности, нужно самостоятельно запускать Libre/Open Office в режиме прослушивания. Лично мне не понятно, почему разработчики поленились и не предоставили функции запуска офиса. Ну да ладно, было бы все сделано, не нужны были бы программисты. Посему будем решать задачу своими силами.
В стандартной библиотеке Python есть немало кошмарных модулей, но этого нельзя сказать о модуле re. Несмотря на его преклонный возраст и многолетнее отсутствие обновлений, я считаю этот модуль одним из лучших среди всех динамических языков.
Python — один из немногих динамических языков, в которых отсутствует встроенная поддержка регулярных выражений, но это компенсируется проработанной базовой системой (с точки зрения API). В то же время он весьма причудлив. К примеру, поведение написанного на Python парсера может вас удивить. Если вы попытаетесь в ходе импорта профилировать Python, то, скорее всего, 90% времени вы проведёте в работе с модулем re.
На новый год купил племяннику головоломку Галакуб. Задача собрать из разных деталей куб размером 4х4х4. Суммарный объём деталей, как раз, 4х4х4. Прежде, чем дарить надо было собрать головоломку. Красивое симметричное решение нашлось достаточно быстро. Но стало интересно единственное это решение или нет. Интуиция подсказывала, что единственное, но хотелось проверить.
Я решил по-быстрому запилить скрипт для перебора всех вариантов. В идеале нужно было успеть до новогодней речи Путина. Ситуация усугублялась тем, что код писался на Макбуке моих родителей. Поставить на него какие-то библиотеки — это задача покруче, чем написать саму программу.
Сейчас уже многие используют библиотеку numpy в своих python-программах, поскольку она заметно ускоряет работу с данными и выполнение математических операций. Однако во многих случаях numpy работает в разы медленнее, чем она может… потому что использует только один процессор, хотя могла бы использовать все, что у вас есть.
Хочу поделиться опытом работы с задачей известного конкурса по машинному обучению от Kaggle. Этот конкурс позиционируется как конкурс для начинающих, а у меня как раз не было почти никакого практического опыта в этой области. Я немного знал теорию, но с реальными данными дела почти не имел и с питоном плотно не работал. В итоге, потратив пару предновогодних вечеров, набрал 0.80383 (первая четверть рейтинга). В общем эта статья для еще начинающих от уже начавшего.
Расскажу я вам сегодня о том, как пытался я добраться из питона до интерфейса жесткого диска, и что из этого получилось.
Появляется у меня периодически необходимость тестирования большого количества жестких дисков. Обычно для этого используется досовая Victoria загружающаяся по сети. Она тестирует диски по одному, что не очень удобно. К тому же последнее время пошли платы не имеющие режима IDE, что дополнительно усложняет задачу. По началу у меня возникла идея взять готовый софт под линукс с открытыми исходниками и добавить ему возможность параллельного тестирования нескольких дисков. После беглого поиска выяснилось удручающее состояние этой области в линуксе. Из софта, ведущего при тестировании статистику по времени доступа к секторам и типам ошибок нашел только whdd. Попытка разобраться с кодом whdd закончилась полным провалом. Для меня, ни разу не программиста, код показался очень запутанным. К тому же большую его часть занимает совсем не работа с железом.
Когда я полтора года назад, будучи студентом 4 курса телекоммуникаций, пришел работать в компанию на должность сисадмина, я понял что работы у меня будет очень много, а учить всего нового придется еще больше. Учебу я отодвинул на второй план, а потом и вовсе стал появляться на парах раз в месяц, потому как работы было много, и она была уж точно интереснее того, чему пытались учить в универе.
Компания занималась продажами, и естественно здесь оказалось много таких человечков, которых зовут менеджерами по продажам, и им нужно было очень много звонить!
Иногда этот метод называют «крестьянское умножение», иногда «древнеегипетское», иногда «эфиопское», иногда «умножение через удвоение и деление пополам». Некоторым он хорошо известен, некоторым – непонятен, но при этом он достаточно полезен и может использоваться не только для умножения, но и для возведения в степень и расчётов матриц.
Я думаю все в курсе о пользе автотестов. Они помогают держать код в работоспособном состоянии даже при существенных изменениях. Так же это может избавить тестировщиков от нудной ручной работы и позволяет сосредоточиться на более интересных видах тестирования.
Несмотря на то, что отдельным частям нашего проекта более 25 лет, мы только в самом начале пути внедрения автоматического тестирования. Тем не менее, у нас уже есть некоторые успехи, о которых я хочу поведать в этой статье.
Как писать хорошие автотесты – тема отдельной статьи. И, вероятно, не одной. Я же расскажу вам как мы внедрили тестирование отдельных компонентов. Компоненты написаны на С++ и имеют интерфейсы очень похожие на СОМ. В качестве языка для тестов мы выбрали python и используем очень мощный тестовый фреймворк PyTest. В статье я расскажу про сложности связки С++/СОМ и питона, подводные камни, на которые мы наткнулись и как решали эти проблемы.
Twisted — асинхронный (событийно-ориентированный) фреймворк, написанный на Python. Мощное средство для быстрой разработки сетевых (и не только) сервисов. Он разработан с использованием паттерна проектирования Reactor. Сервисы созданные с использованием Twisted быстры и надежны, фреймворк позволяет не писать макаронный код, насыщенный непонятными коллбэками, имеет внутри себя красивые хелперы (Deferred, Transport, Protocol etc). Другими словами, делает нашу жизнь бекенд разработчиков лучше.
Но есть и проблемы
Библиотека XGBoost гремит на всех соревнованиях по машинному обучению и помогает завоёвывать призовые места. Однако, стать обладателем этого пакета для Python под Windows не так просто.
Процесс установки скудно описан на GitHub и немногим шире на форуме Kaggle. Поэтому попробую описать пошагово и более подробно. Надеюсь это поможет сохранить много времени неопытным пользователям.
Продолжение перевода неофициальной документации Selenium для Python.
Оригинал можно найти здесь.
Вдохновение — задача с собеседования Яндекса и статья «Парсинг формул в 40 строк». Моей целью было посмотреть, как будет выглядеть «pythonic» решение этой задачи. Хотелось, чтобы решение было простым, код читаемым и разделённым. В итоге ещё получился и пример применения цепочки генераторов (generators pipeline).
СУБД Neo4j — это NoSQL база данных, ориентированная на хранение графов. Изюминкой продукта является декларативный язык запросов Cypher.
Cypher позаимствовал ключевые слова типа WHERE, ORDER BY из SQL; синтаксис из таких разных языков как Python, Haskell, SPARQL; и в результате появился язык, позволяющий делать запросы к графам в визуальной форме наподобие ASCII art. Например, заголовок данной статьи я бы представил в виде графа (Neo4j) — [изучаем] -> (Wordnet). И это почти готовый запрос к базе данных!
Формулировка задачи: визуализировать все связи между двумя пользователями внутри одной социальной сети. При этом связи не должны дублироваться, например если Ваня знает Петю через Олю, то Оля в дальнейших итерациях по поиску общих друзей не участвует. Чтобы попрактиковаться в API, я выбрал “Вконтакте”.