Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Вот мы постепенно и дошли до продвинутых методов машинного обучения, сегодня обсудим, как вообще подступиться к обучению модели, если данных гигабайты и десятки гигабайт. Обсудим приемы, позволяющие это делать: стохастический градиентный спуск (SGD) и хэширование признаков, посмотрим на примеры применения библиотеки Vowpal Wabbit. Домашнее задание будет как на реализацию SGD-алгоритмов, так и на обучение классификатора вопросов на StackOverflow по выборке в 10 Гб.
Обычно модели машинного обучения строят в jupyter-ноутбуках, код которых выглядит, мягко говоря, не очень — длинные простыни из лапши выражений и вызовов "на коленке" написанных функций. Понятно, что такой код почти невозможно поддерживать, поэтому каждый проект переписывается чуть ли не с нуля. А о внедрении этого кода в production даже подумать страшно.
Поэтому сегодня представляем на ваш строгий суд превью python'овской библиотеки по работе с датасетами и data science моделями.
Серия моих статей является расширенной версией того, что я хотел увидеть когда только решил познакомиться с нейронными сетями. Он рассчитан в первую очередь на программистов, желающих познакомится с tensorflow и нейронными сетями. Уж не знаю к счастью или к сожалению, но эта тема настолько обширна, что даже мало-мальски информативное описание требует большого объёма текста. Поэтому, я решил разделить повествование на 4 части:
Недавно я писал статью про то, как написать парсер дневника МРКО, а в конце пообещал написать про интеграцию с Телеграм ботом, о чем очень жалею. Сейчас бот уже готов и полностью функционирует. Хочу рассказать вам, что использовал и с какими трудностями столкнулся в этой работе.
Вы никогда не задумывались, почему тексты классических русских писателей так ценятся, а сами писатели считаются мастерами слова? Дело явно не только в сюжетах произведений, не только в том, о чём написано, но и в том, как написано. Но при быстром чтении по диагонали осознать это трудно. Кроме того, текст какого-нибудь значимого романа нам просто не с чем сравнить: почему, собственно, так прекрасно, что в этом месте появилось именно это слово, и чем это лучше какого-то другого? В какой-то мере реальное словоупотребление могло бы контрастно оттенить потенциальное, которое можно найти в черновиках писателя. Писатель не сразу вдохновенно пишет свой текст от начала до конца, он мучается, выбирает между вариантами, те, что кажутся ему недостаточно выразительными, он вычеркивает и ищет новые. Но черновики есть не для всех текстов, они отрывочны и читать их сложно. Однако можно провести такой эксперимент: заменить все поддающиеся замене слова на похожие, и читать классический текст параллельно с тем, которого никогда не было, но который мог бы возникнуть в какой-то параллельной вселенной. Попутно мы можем попытаться ответить на вопрос, почему это слово в этом контексте лучше, чем другое, похожее на него, но всё-таки другое.
К сожалению, на данный момент нет хороших библиотек на Python2, для того, чтобы быстро создать чат-бота. Ниже я покажу, как легко можно написать примитивного чат бота для VK, используя API VK.
Статья написана для новичков, чтобы показать, что ничего сложного в написании ботов на Python нет.
В статье [1] я в строгом соответствии с общеизвестной теорией колебательных процессов рассмотрел колебательное звено, построив переходные процессы с применением библиотек SymPy и NumPy.
Первым был рассмотрен случай апериодических и свободных затухающих колебаний, инициируемых бесконечным импульсом силы постоянной амплитуды.
Вторым был рассмотрен случай отрицательного демпфирования (который я не прокомментировал). Отрицательное демпфирование можно наблюдать, когда под горизонтально подвешенного в центре на двух пружинах кубике движется лента качающееся его одной его гранью.
Некоторое время назад передо мной встала задача: выбрать из таблицы значения по пользователям. Причём, эти значения должны соответствовать определённому регулярному выражению. Но и это не конец условия: из выбранных выражений нужно вытащить substring. Опять же, по регулярке. Сделал я это довольно быстро, и захотелось поделиться опытом с тем, кто ещё не может применять Annotate и Query Expressions на практике
Сегодня познакомимся с QML. Узнаем что это такое и с чем его едят. Создадим небольшое приложение с использованием данной технологии.
Готовое архитектурное решение для мобильных устройств, включая iOS, Android, Telegram-bots, а также платформы, поддерживающие обработку http-запросов, выступающее в роли пет-проекта автора статьи, будет интересно желающим реализовать «карманное» расписание занятий для своих университетов и школ.
Так вот, данный текст — это скорее байки по мотивам, в которых, с одной стороны, всё — правда, а с другой, обилие лирических отступлений и прочей отсебятины не позволяет рассматривать его как что-то наукоемкое, а скорее просто как полезное и увлекательное чтиво, цель которого показать, как может происходить процесс работы над задачами в дисциплине соревновательного машинного обучения. Кроме того, в тексте достаточно много лексикона, который специфичен для Kaggle и что-то я буду по ходу объяснять, а что-то оставлю так, например, вопрос про гусей раскрыт не будет.
Ниже вы прочитаете обзор статьи The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology, которую мы с коллегами из Insilico Medicine и МФТИ подготовили для американского журнала Oncotarget, с упором на реализацию предложенной модели во фреймворке tensorflow. Исходная задача была следующей. Есть данные вида: вещество, концентрация, показатель роста раковых клеток. Нужно сгенерировать новые вещества, которые останавливали бы рост опухоли при определенной концентрации. Датасет доступен на сайте NCI Wiki.
Адаптация статьи REST WORST PRACTICES, © Jacob Kaplan-Moss. Статья написана применительно к Django, но информация будет актуальна для широкого круга специалистов.
Думаю что лучший способ понять как нужно делать, изучить как делать НЕ нужно. Представляю вашему вниманию вредные советы проектировщикам REST API.
У компании есть веб-сайт, на котором есть красная кнопка в форме прямоугольника с закругленными краями. Если пользователь нажимает на эту кнопку, то где-то в мире мурлычет от радости один котенок. Задача компании — максимизация мурлыкания. Также есть отдел маркетинга, который усердно исследует формы кнопок и то, как они влияют на конверсию показов в клико-мурлыкания. Потратив почти весь бюджет компании на уникальные исследования, отдел маркетинга разделился на четыре противоборствующие группировоки. У каждой группировки есть своя гениальная идея того, как должна выглядеть кнопка. В целом никто не против формы кнопки, но красный цвет раздражает всех маркетологов, и в итоге было предложено четыре альтернативных варианта. На самом деле, даже не так важно, какие именно это варианты, нас интересует тот вариант, который максимизирует мурлыкания. Маркетинг предлагает провести A/B/n-тест, но мы не согласны: и так на эти сомнительные исследования спущено денег немерено. Попробуем осчастливить как можно больше котят и сэкономить на трафике. Для оптимизации трафика, пущенного на тесты, мы будем использовать шайку многоруких байесовских бандитов (bayesian multi-armed bandits). Вперед.
В статье использованы возможности пакета SymPy совместно с пакетом NumPy. Всё сводиться к преобразованию символьных выражений в функции способные работать с другими модулями Python.
Процесс решения дифференциальных уравнений становиться наглядным и хорошо контролируемым на каждом этапе вычислений. Следует отметить, что колебательное звено в разных интерпретациях обсуждается в сетях [1,2]. Например, в [3] приводиться модель колебательного звена с подробным исследованием переходных процессов.
Надеюсь, что подобные исследования колебательного звена на Python найдут своих сторонников.
В рамках сегодняшней статьи хочется обзорно описать три похожих, но разных задачи:
Отдельно отмечу, что в этой статье почти не будет формул, зато будет относительно много кода.
В моей статье [1] рассмотрен метод гармонической линеаризации для исследования систем управления, содержащих нелинейные элементы.
Этот метод может быть использован в том случае, когда линейная часть системы является низкочастотным фильтром, т.е. отфильтровывает все возникающие на выходе нелинейного элемента гармонические составляющие, кроме первой гармоники [2]. Поэтому логическим продолжением моей первой статьи будет гармонический анализ рассмотренных нелинейных элементов. Кроме этого нужно рассмотреть аппаратную альтернативу методу гармонической линеаризации.
Что gdb можно как-то улучшать на питоне, знает каждый, кто хоть раз заглядывал в документацию. А кто хоть раз просматривал ее по диагонали, знает про такую штуку, как «Pretty Printers» — которые вроде позволяют gdb красиво печатать разные сложные структуры. Я документацию по диагонали просматривал, хотя особо и не вникал. Но однажды, набирая в очередной раз что-то вроде (все примеры из исходников MariaDB, которые я дебажу по много раз каждый божий день, иногда исключая выходные):
Год назад Microsoft представила платформу для создания ботов под Skype. Платформа предоставляет удобный формат сообщений, можно отправлять карточки с кнопками, как в телеграмме, одним словом, выглядит все очень круто.
Недавно мне потребовалось написать бота для Skype. И несмотря на то, что тема подымалась на хабре ( например), я столкнулся с некоторыми сложностями, мне очень не хватало step-by-step гайда по работе с REST API.
Для лингвистического исследования мне понадобился корпус прямой речи, порожденной одним человеком. Я решил, что для начала удобнее всего использовать собственную переписку в ВК. Это статья о том, как скачать все сообщения, которые Вы когда-либо отправляли своим друзьям, используя программу на Python и API ВКонтакте. Для работы с API будем использовать библиотеку vk.