Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Вы собираетесь отправиться в путешествие, чтобы научиться создавать веб-приложения с помощью Python и фреймворка Flask. В этой первой главе вы узнаете, как настроить проект Flask. К концу этой главы на вашем компьютере будет запущено простое веб-приложение Flask!
А теперь о том, что происходило в последнее время на других ресурсах.
Устали мониторить бесконечные групповые чаты в Telegram в поисках важной информации? Решение есть! Пишем компактное приложение на Python, которое будет делать это за нас с использованием LLM.
В отличие от Pytorch, где структура данных выстраивается налету после начала обучения нейронки – в TensorFlow граф статичен. В этой статье мы кратко расскажем про некоторые способы ускорения обучения путем изменения графа вычислений: XLA, GraphTransform Tool, квантизация, заморозка графа и сохранение легкого чекпоинта.
Относительно недавно мы получили заказ на разработку веб-сервиса, который позволял бы нашим клиентам, владельцам электрокаров, строить маршруты и на их протяжении бронировать электронные зарядные станции (далее - ЭЗС) под свои нужды. Я представил свою версию системы и хотел бы поделиться с вами ходом мыслей. Возможно, кто-то захочет прокомментировать мою модель или дать совет.
Продолжаем работу над созданием веб-приложения для управления бронью ЭЗС, которое мы начинали ранее. Сейчас мы обратим внимание на практические аспекты: построение математической модели метода, его программная реализация и экономическое обоснование разработанного ИТ-решения.
Мое первое знакомство с парсингом веб-сайтов произошло во время выполнения итогового проекта по дисциплине "Языки программирования Java". Для этого проекта мне потребовалось написать шаблон магазина, а затем заполнить базу данных реальными карточками товаров. Вместо того чтобы вручную вводить огромное количество данных, я решил использовать парсинг для автоматизации этого процесса.
Начнём с более простого. Логистическая регрессия — линейный бинарный классификатор, основанный на применении сигмоидальной функции к линейной комбинации признаков, результатом которого является вероятность принадлежности к определённому классу. Обычно порог устанавливается 0.5: если вероятность меньше порога — класс относится к 0, а если больше — к 1. В принципе, условия определения логистической регрессии такие же как и у линейной за исключением бинаризации таргета.
Я довольно давно пишу на Python и во многих проектах использовал multiprocessing — пакет стандартной библиотеки языка Python, который предоставляет интерфейс для работы с процессами, очередями, пулами процессов и многими другими удобными инструментами для параллельного программирования. В какой-то момент я понял, что мне не хватает более детального понимания работы этой библиотеки.Мне захотелось залезть в исходники multiprocessing, разобраться и заодно написать статью. Данная статья в основном рассчитана на новичков в Python и тех, кто хочет подробнее разобраться в том, как именно создаются процессы и пулы в Python и погрузиться в детали реализации.
В этой статье я расскажу про своё видение работы с цветом при визуализации графиков. Буду показывать все на примерах — уверен, они вам понравятся. Я покажу не только картинки было-стало, но и приведу примеры кода, а также объясню логику принятия решений: как использовать ту или иную палитру в конкретной задаче.
Гиперпараметры — это параметры, которые не учатся в процессе обучения модели. Они задаются заранее. От выбора гиперпараметров напрямую зависит качество и эффективность модели, а их оптимизация может улучшить результаты предсказаний.
Это вторая и заключительная часть статьи, в которой мы рассматриваем задачу классификации экзопланет. Если предыдущая статья была больше про предобработку данных, то здесь мы будем строить модели, отбирать лучшие и экспериментировать.
Сценарии использования ИИ для учебы на поверхности. Поговорим же здесь про то, как можно использовать ChatGPT для обучения программированию.
Линейный дискриминантный анализ (Linear Discriminant Analysis или LDA) — алгоритм классификации и понижения размерности, позволяющий производить разделение классов наилучшим образом.
А теперь о том, что происходило в последнее время на других ресурсах.
В этой статье мы создадим desktop-приложение, которое по нашему запросу будет сохранять на нашем диске заданное количество картинок. Так как картинок будет много, мы воспользуемся асинхронностью Python для конкурентной реализации операций ввода-вывода. Посмотрим, чем отличаются библиотеки requests и aiohttp. Также создадим два дополнительных потока приложения, чтобы обойти глобальную блокировку интерпретатора Python.
В данной работе рассматривает пример создания симуляционной модели четырёхколёсной мобильной платформы с рулевым управления по типу Аккреманна, с использованием фреймворка ROS, контроллер написан на языке Python.
Метод опорных векторов (Support Vector Machine или просто SVM) — мощный и универсальный набор алгоритмов для работы с данными любой формы, применяемый не только для задач классификации и регрессии, но и также для выявления аномалий. В данной статье будут рассмотрены основные подходы к созданию SVM, принцип работы, а также реализации с нуля его наиболее популярных разновидностей.
Дерево решений CART (Classification and Regressoin Tree) — алгоритм классификации и регрессии, основанный на бинарном дереве и являющийся фундаментальным компонентом случайного леса и бустингов, которые входят в число самых мощных алгоритмов машинного обучения на сегодняшний день. Деревья также могут быть не бинарными в зависимости от реализации. К другим популярным реализациям решающего дерева относятся следующие: ID3, C4.5, C5.0.
В завершающей 3 части постараюсь вкратце объяснить как запустить телеграм бота на VPS. Предыдущие части доступны здесь и здесь .