Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Разработка отказоустойчивых систем представляет собой важнейшую компетенцию для инженеров, занятых созданием распределённых и масштабируемых приложений. Под отказоустойчивостью понимается способность системы сохранять работоспособность в условиях сбоев отдельных компонентов или недоступности внешних сервисов. В данной статье рассматриваются практики обеспечения устойчивости на уровне программного кода.
В этой статье разберём процесс написания API автотестов на Python, используя современные best practices. Кроме того, мы настроим их запуск в CI/CD с помощью GitHub Actions и сформируем Allure-отчёт с историей запусков. Цель статьи — не только показать, как писать качественные API автотесты, но и научить запускать их в CI/CD, получая удобные отчёты о результатах.
Энергосбережение в программировании — тема, которую часто обходит стороной, пока ноутбук не сядет посреди важной видеоконференции. В этой статье разбираемся, как писать код, который не только работает, но и делает это энергоэффективно. Много примеров, немного философии и максимум пользы.
Однопоточные приложения на Python ограничены в производительности: они выполняют задачи последовательно и не используют преимущества многоядерных процессоров.
В сети много примеров подключения LLM модели к Telegram-боту, но при большом числе пользователей нет руководств по распределению нагрузки между процессами — все туториалы предлагают монолит с одной репликой. Эта статья объясняет, как балансировать нагрузку бота для тысяч пользователей, в том числе, после подключения model context protocol для интеграций
Если вы инженер-сметчик, то наверняка знаете, что такое ежедневная работа с огромными таблицами и бесконечными спецификациями. Кто-то, возможно, уже смирился с монотонностью, а кто-то разработал свои лайфхаки для ускорения обработки данных. Но сегодня расскажем о новом подходе, который помог нам упростить процесс составления сметы на монтаж системы вентиляции.
Я написал BrainBox — local-first сервис поддержки open-source ИИ-систем для генерации изображений, распознавания объектов на снимках, озвучки, распознавания текстов, транскрибирования аудиозаписей и других целей. Эти системы запускаются за фасадом веб-сервера, который устанавливает их и затем принимает и выполняет задачи в едином для всех систем формате.
Когда я начал свой путь в парсинге, мне в голову сразу пришла идея написать клиент для удобного взаимодействия со школьным дневником. В последствии я решил оформить его в виде Telegram-бота.
Кажется, языков программирования уже предостаточно, но IT-гиганты продолжают плодить свои. Google, Apple, JetBrains — готовых решений хватает до отказа, а им все равно хочется иметь что-то свое, эксклюзивное. Дело в технологической необходимости, гордыне или «синдроме NIH», когда чужое не берут? Может, это попытка захватить контроль над всем технологическим стеком или хитрый маркетинговый ход для завоевания умов разработчиков? Давайте копнем глубже, чтобы разобраться.
В этой статье я расскажу про AUF. Её главная задача — автоматическое решение задач uplift-моделирования.
Позволяет ускорять разработку в десятки раз и убирает рутину, избавляя от привычного fit-predict. Приятным бонусом идёт полный отчёт по качеству модели, понятный как DS, так и бизнесу.
Как экономить до 90% оперативной памяти при загрузке pandas DataFrame из базы данных?Сравним различные способы выгрузки данных и найдем метод для снижения потребления оперативной памяти.
Ориентируются ли собаки по компасу, когда делают свои грязные дела? Оказывается — да! Если вам интересно, как можно это подтвердить в домашних условиях, используя компас, Байесовскую статистику и собаку (собака не включена), то добро пожаловать под кат.
А теперь о том, что происходило в последнее время на других ресурсах.
Профессия "плотник" полезна в обычной жизни, а что можно сказать о "программисте"? Когда государственной политикой является цифровизация, то правительство должно понимать: цифра она везде цифра! И в обычной жизни придется учитывать и такие истории.
Хочу поделиться своим опытом создания Telegram-бота для текстовых квестов при помощи ИИ. Если вы любите текстовые квесты, писать ботов или просто интересуетесь GPT, то этот материал для вас.Ссылка на репозиторий с исходным кодом: questTg.
Потратил пару месяцев, чтобы спарсить матчи и понять, насколько футбол хаотичная и непредсказуемая игра. И выводы оказались довольно неоднозначными. Но обо всём по порядку
В этой статье сравним poetry, uv и rye: кто быстрее управляет зависимостями, как использовать их в Docker, и какой выбрать в 2025 году. Заодно пробежимся по философии инструментов и посмотрим пару новых PEP стандартов, которые могут улучшить работу с зависимостями.
Передо мной стояла задача создать модель машинного обучения, которая позволяет предсказывать финальный вес птицы при ежедневном внесении данных и динамически корректировать прогноз с учетом новой информации.
5k RPS, 5ms Latency и 100 экспериментов одновременно. История о том, как наша команда перестраивала веб-сервис для сплитования трафика в высокопроизводительную систему. С какими ограничениями Cpython и Gil столкнулись на пути, как обходили "узкие места" и оптимизировали сервис до микросекунд. В общем, всё о том, как мы построили "космолет" на Python и взлетели! Ну и, конечно же, ответ на вопрос: "Почему не Go? ".
Итак, я прошел длинный путь создания RAG с нуля, и начал делать AI агентов для нашей компании. По технологиям испробовал: