Собрали в одном месте самые важные ссылки
читайте авторский блог
Сегодня я расскажу и покажу, как сделать Genetic Algorithm(GA) для нейросети, чтобы с помощью него она смогла проходить разные игры. Я его испробовал на игре Pong и Flappy bird. Он себя показал очень хорошо.
АА-дерево - это модификация красно-черного дерева с целью упрощения реализацииКак его реализовать и как оно работает на конкретных примерах
Мы продолжаем изучать PySide6/PyQt6 и сейчас мы с Вами познакомимся с виджетами, компоновкой и Qt Designer. PySide6 включают в себя довольно большое количество встроенных виджетов. Вы можете найти более подробную информацию в официальной документации PySide6.
А теперь о том, что происходило в последнее время на других ресурсах.
Сегодня я расскажу как одно из наших решений сделало свой последний вздох, что привело к небольшому факапу, и о том как большое исследование помогло выиграть нам время и избежать ещё большего факапа — или нет?
Кластеризация — это набор методов без учителя для группировки данных по определённым критериям в так называемые кластеры, что позволяет выявлять сходства и различия между объектами, а также упрощать их анализ и визуализацию. Из-за частичного сходства в постановке задач с классификацией кластеризацию ещё называют unsupervised classification.
Сегодня мы с Вами рассмотрим прекрасную библиотеку PySide6, которая является оберткой для взаимодействия с Qt при помощи языка Python, которые позволяет вам использовать Python для написания desktop-приложений Qt.
Метод главных компонент (Principal Component Analysis или же PCA) — алгоритм обучения без учителя, используемый для понижения размерности и выявления наиболее информативных признаков в данных. Его суть заключается в предположении о линейности отношений данных и их проекции на подпространство ортогональных векторов, в которых дисперсия будет максимальной.
Все же знают серию компьютерных футбольных симуляторов FIFA? Раньше я много играл в эту игру. Кто-то скажет, что это бесполезная трата времени, но я с этим не согласен. Эта игра вдохновила меня на разработку pet-проекта, который стал моим бакалаврским дипломом.Во время игры в FIFA пользователь видит небольшую карту с местоположением игроков и мяча на поле, данный элемент интерфейса является очень полезной фичей, без которой невозможно представить полноценный игровой процесс. Мне показалось, что данную карту было бы неплохо перенести в реальный мир, используя видеозапись матча и нейросеть.
А может всё-таки есть способ сделать такой Enum, используя стандартную библиотеку Python?! Под катом будем разбираться в существующих вариантах решения.
В среде финтех проектов наблюдается интересный парадокс. С одной стороны, вряд ли можно найти область, куда приходит больше инвестиций. Поэтому именно в финтехе сосредоточены самые продвинутые технологии: блокчейн, искусственный интеллект, биг дата, ML и др. С другой стороны, именно в финансовой области наблюдается наименьшее количество хорошо развитых open-source проектов.
Большинство сотрудников Mediascope используют Python для решения повседневных задач: разрабатывают модели машинного обучения, пишут код для веб-сервисов, анализируют данные, автоматизируют рутинные процессы. В прошлом году мы провели корпоративный чемпионат, который помог повысить мотивацию к изучению Python и оживить внутреннее комьюнити. А ещё чемпионат получил продолжение: модель из ML-трека стала прототипом во внутреннем конвейере обработки данных. Расскажем, как это было.
Внезапная сердечная смерть (ВСС) происходит, когда возникают проблемы с электрической активностью в сердце. Это распространенная причина смерти по всему миру, поэтому было бы полезно легко выявлять людей с высоким риском ВСС. Электрокардиограммы - это доступный и широко используемый способ измерения электрической активности сердца. Мы разработали вычислительный метод, который может использовать электрокардиограммы для определения, находится ли человек в повышенном риске ВСС. Наш метод может позволить врачам скрининг больших групп людей и выявление тех, кто находится в повышенном риске ВСС. Это может позволить регулярное наблюдение за этими людьми и, возможно, предотвращение ВСС у некоторых из них.
Как запустить локально LLM 70B параметров на 1 видеокарте с 24gb? Нужно квантование! Квантование - это процесс уменьшения битности вычислений в нейронной сети, используемых для представления весов, смещений и активаций. Путем снижения точности мы можем значительно сократить требования к памяти и вычислительной сложности модели.
Мульти-тенант (multi-tenancy) — это подход, который позволяет одному экземпляру приложения обслуживать множество клиентов или арендаторов (тенатов). Каждый арендатор изолирован от других, имея возможность кастомизации под свои нужды, при этом основной кодовой базой и инфраструктурой делится между всеми.Когда применять эту замечательную концепцию?
Аалитики данных часто сталкиваются с грязными данными, которые могут существенно замедлить процесс анализа. Грязны данные – это пропущенные значения, дубликаты, неконсистентные данные. Пропущенные значения заставляют нас гадать, что же было замыслено нашим коллегой; дубликаты вводят в заблуждение, умножая одно и то же на количество их копий, а неконсистентные данные заставляют нас сомневаться в каждой цифре.Очищать грязные данные можно c Pandas. Рассмотрим основные методы.
В этом материале мы поговорим об устройстве компонента‑декодера в системах машинного обучения, построенных по архитектуре «трансформер», уделив особое внимание отличию декодера от энкодера.
Речь пойдёт про задачу моделирования поведения маятника: коротко разберём теорию, которая лежит в основе модели, немного подумаем над архитектурой и напишем небольшое приложение на связке Python + Tkinter. Реализация будет поддерживать исследование различных маятников с помощью самописных динамических графиков, в которые пользователь может ввести собственные формулы.
Одно из самых прикладных применений языковых моделей (LLM) - это ответы на вопросы по документу/тексту/договорам. Языковая модель имеет сильную общую логику, а релевантные знания получаются из word, pdf, txt и других источников.Обычно релевантные тексты раскиданы в разных местах, их много и они плохо структурированы. Одна из проблем на пути построения хорошего RAG - нахождение релевантных частей текста под заданный пользователем вопрос. В статье мы посмотрим на способы нахождения релевантных текстов, увидим проблемы, которые в связи с этим возникают.
«Зачем мне SQL и python?» — задают резонный вопрос маркетологи или менеджеры по продукту, особенно в сфере недвижимости, оптовой торговли, услуг для бизнеса: «У нас нет миллионов строк данных, нет логов, мы успешно работаем с несколькими таблицами в excel».