Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Jupyter Notebook - прекрасный инструмент для исследовательской работы. Автоматическое форматирование LaTeX формул, структурированная логика в ячейках, результаты выполнения прямо в документе - всё это делает ноутбуки идеальными для презентации результатов анализа данных, обучения и демонстраций. Что может быть лучше?
В нашем блоге мы говорим о стеганографии — искусстве сокрытия информации. Встроить секретное сообщение в картинку методом LSB (замены младших значащих бит) достаточно просто. Но как насчет обратной задачи? Как понять, является ли безобидный с виду файл троянским конем, несущим скрытые данные?
А теперь о том, что происходило в последнее время на других ресурсах.
Так как мои настольные игры не совсем простые (а именно обучающие и научные), то вопросы по правилам у родителей возникают регулярно. И как хорошо правила не напиши, научная тематика делает свое «черное» дело и даже минимальное вкрапление методики ставит игроков в ступор по тем или иным моментам правил.
В этой статье будет приведено практическое руководство по базовой настройке и запуску следующих инструментов для работы с LLM: Ollama, LM Studio, vLLM, Triton, llama.cpp, SGLang.
Команда Alibaba Cloud выпустила Qwen3-ASR-Toolkit — открытый инструмент для транскрипции аудио- и видеофайлов любой длительности. Решение построено на базе модели Qwen3-ASR (ранее Qwen3-ASR-Flash) и устраняет ключевую проблему большинства API для распознавания речи — ограничение по длительности файла.
Во второй части курса по созданию ИИ-агентов превращаем безжизненные схемы в настоящих цифровых собеседников: подключаем нейросети к LangGraph, учим их запоминать контекст на сотни сообщений и гарантированно получать валидный JSON вместо творческой "болтовни". Создаем умные системы, которые сами определяют тип сообщения — отзыв это или вопрос — и автоматически направляют в нужную ветку обработки.
С развитием LLM моделей AI начали появляться разные ИИ агенты, автоматизирующие задачи.Но есть задачи, типа рутинного создания папок в облаке или удаления файлов, которые хорошо бы автоматизировать, но ручками сделать можно.А есть задачи, где без дополнительной технической помощи никак. Сейчас я говорю например о тех, которые в связи с инвалидностью просто физически не могут осуществлять элементарные для большинства операции.
Эта статья о разработке средства визуализации импортов внутри проекта на python, основное назначение которого построить полный граф связи скриптов между собой и с внешними библиотеками, основываясь только на статическом анализе AST дерева. Код не будет выполняться, а доступность библиотек — проверятся. Цель показать, что было задумано, а не как это будет работать в текущем окружении.
В прошлой части мы подробно разобрали 11 популярных техник RAG: как они устроены, какие у них есть сильные и слабые стороны, и в каких сценариях они могут быть полезны. Теперь пришло время перейти от теории к практике и посмотреть, как эти подходы показывают себя в деле. В этой статье мы посмотрим на результаты экспериментов: какие техники оказались наиболее эффективными на датасете Natural Questions, где они приятно удивили, а где — наоборот, не оправдали ожиданий.
При тестировании распределенных систем разработчики сталкиваются с асинхронным взаимодействием с серверами, громоздкими сценариями отправки и сложным входом для новичков. Это приводит к ошибкам, долгой отладке и росту затрат.
В статье сегодня мы поговорим не о выборе алгоритмов, а о том, как автоматизировать весь процесс ML — от данных до деплоя и мониторинга, сократив время на подготовку с дней до часов. Мы разберем это на примере классической задачи с Titanic, реализованной на нашем фреймворке.
Навигация внутри помещений может быть нетривиальной задачей, учитывая низкую точность GPS из-за искажений сигнала во время его прохождения через стены. Можно по всему помещению развесить маячки, но это требует больших затрат на оборудование и обслуживание. При этом, Wi-Fi роутеры, которые уже есть в помещениях, как раз могут выступать такими маячками. Измеряя мощность сигнала на устройствах, можно определять местоположение с довольно большой точностью.
Работая в компании, которая занимается автоматизацией складских процессов, мы столкнулись с задачей прогнозирования нагрузки на склад. Это классическая задача предсказания временных рядов, в которой, имея достаточно большой объем исторических данных (минимум 1-2 года), нужно спрогнозировать, как эти данные будут меняться в будущем.
Компании и энтузиасты стремятся автоматизировать процессы, но не каждый готов писать код с нуля. Поэтому в последние годы особую популярность набрала no-code платформа n8n. С её помощью можно быстро собирать пайплайны различной сложности: от простых чат-ботов до умных ассистентов, которые управляют календарем и напоминают о задачах. Обычно в статьях про n8n затрагивают только готовые блоки, собирают из них пайплайны автоматизации, но в то же время упоминают об ограниченности использования этой платформы.
Задавались ли вы когда-нибудь вопросом, что происходит под капотом обучения, например, линейной регрессии? Если вы до сих пор не нашли ответ на этот вопрос, то эта статья для вас. Сегодня простым языком разберём, что такое градиентный спуск — от интуиции до полноценного обучения линейной регрессии с нуля.
В этой статье мы разберём, как написать свой многопоточный TCP-порт-сканер на Python. Несмотря на то, что существуют готовые инструменты вроде nmap или masscan, иногда требуется минималистичное решение: встроить проверку в CI/CD, автоматизировать аудит небольшой сети или использовать сканер как обучающий пример. Мы рассмотрим два подхода — на ThreadPoolExecutor и на asyncio
Любому веб-приложению нужен веб-сервер для доступа извне. На самом деле, многие даже не уделяют выбору веб-сервера для своего приложения достаточного внимания: на Django берут "популярный" Gunicorn (а кто-то ещё и обвязывает его Uvicorn'ом), а для FastAPI Uvicorn практически стандарт. Тут "на сцену" выходит Granian, представляющий впечатляющие результаты производительности с простой настройкой.
Если вы только начинаете изучать Python и слышите слово дженерики, скорее всего в голове сразу каша: «что это вообще такое?». На самом деле дженерики - это очень простая идея. Представьте, что у вас есть коробка. В коробку можно положить игрушки, яблоки, книжки - всё что угодно.Но иногда вы хотите, чтобы в коробке лежали только яблоки. А иногда - только игрушки. И вот тут вам помогают generics.
Сегодня доклад будет максимально простыми словами, будто сидим, пиво пьем, рыбку едим, потому что необычайно сложный контент. Но я хочу, чтобы вы выключили полностью мозги, расслабились, получили удовольствие и читали сердцем. Все это делал я, Александр Сербул, с небольшой командой. Моя задача — возбудить в вас интерес к Rust, высоким нагрузкам, асинхронщине, многопоточности и тому, как мы это используем.