Собрали в одном месте самые важные ссылки
читайте авторский блог
В задачах машинного обучения значительную часть времени занимает процесс подготовки данных. К этапу подготовки относятся: сбор, фильтрация, разметка и предобработка данных.В данной статье я буду рассматривать процесс автоматической разметки данных для задач компьютерного зрения.
Однажды меня попросили провести ревью и рефакторинг одного telegram-бота. Увидев файл размером 2000 строк, рассчитанный только на обработку разных меню я понял, что это требует унификации и общих подходов. Так родилась библиотека aiogram-dialog.
Давным-давно, человечество поднимало взоры к небесам и задавало себе вопросы о природе вселенной. Сегодня астрофизика стала ключом к пониманию космических явлений. Мы исследуем черные дыры, изучаем движение планет и звёзд, разгадываем секреты галактик. Исследования космических явлений требуют огромных объемов данных и сложных вычислений. Здесь на помощь приходит компьютерное моделирование. Мы можем воссоздать Вселенную на экране монитора, создавать виртуальные звёзды и планеты, а затем изучать их поведение.
Таблица справочник, которая является медленно изменяющейся и также генерирует DAG.В статье рассказывается как можно хранить бизнес-метрики и собирать их через DAG.
Altair — это декларативная библиотека визуализации данных, разработанная на основе языка Vega и Vega-Lite. Она предоставляет высокоуровневый интерфейс для создания информативных и красочных графиков с минимальными усилиями. Основная философия Altair заключается в том, что пользователи должны описывать, что они хотят увидеть на графике, а не как это реализовать. Это делает код более читаемым и интуитивно понятным.
Для тренировки нейронных сетей необходимы датасеты с достаточным количеством тренировочных данных. Зачастую в рамках разработки ML‑модели, именно составление датасета, пригодного для её обучения, занимает большую часть времени и усилий. В случае, если датасет нельзя составить из реальных данных, прибегают к генерации синтетических данных. При разработке «распознавателя» паспортов без достаточного количества реальных образцов возникла необходимость генерации паспортных данных и соответствующих им изображений отдельных полей.
Музыка, неотъемлемая часть человеческой культуры, всегда отражала дух времени. Однако с наступлением цифровой эры и быстрого развития технологий, музыкальная индустрия столкнулась с революцией, которая изменила не только способы создания и распространения музыки, но и сам способ, которым мы взаимодействуем с ней.
Python — простой, но мощный язык, поэтому он используется в самых разных областях. Написать код на Python легко, но сделать его удобочитаемым и пригодным для повторного использования и сопровождения может оказаться проблемой. Четвертое издание этой книги дополнено лучшими практиками, полезными инструментами и стандартами, которые применяют профессиональные разработчики.
Хочу поделиться с вами своим опытом анализа данных и машинного обучения на примере интересной и полезной задачи — классификации грибов на съедобные и ядовитые. А именно, в данной статье я расскажу о том, как обучал различные модели машинного обучения отличать съедобные грибы от несъедобных, с какими сложностями столкнулся в процессе и какие интересные наблюдения про грибы и ML открыл по пути.
Несколько месяцев я пытался разбираться в ML и когда мне под руку попался легенький хакатон для школьников, связанный с CV, я решил, что это мой шанс!Изучая задачу, я понял, что мне нужно обнаруживать чаек по фотографиям. Для решения задачи я решил использовать yolov8s, потому что он мне показался оптимальнейшим из линейки yolov8 для моего случая.
Начнем знакомство с подключаемой библиотекой RepkaPi.GPIO, данная библиотека написана на Python 3 и для управления GPIO использует методы, реализованные через SysFS.
Производственная деятельность предприятия связана с работой ответственных должностных лиц над одним или несколькими документами. Порядок прохождения документов определён нормативными актами. Каждое должностное лицо заполняет ту или иную часть документа, согласовывает, утверждает документ, возвращает его на доработку, участвует в выполнении работ по документу.
Представьте ситуацию: вы написали скрипт для обработки каких-то данных на ноутбуке, ушли попить кофе, а когда пятнадцать минут спустя вернулись, завершилось едва ли 10%. Почему скрипт работает так медленно? Какая его часть тормозит? Дело в чтении данных, их обработке или сохранении? Как ускорить исполнение?
А теперь о том, что происходило в последнее время на других ресурсах.
Если Вы как и я решили впервые взглянуть в сторону Python после нескольких попыток изучения С++/C# то скорее всего первым проектом станет desktop-приложение.
Публикация является продолжением обсуждения алгоритмов вычисления первой производной дискретной функции (функции, заданной массивом {аргумент: значение}, или массивом узловых значений).
Создателям роботов и систем автоматизации не обойтись без таких устройств, как сервоприводы или, как их еще называют, сервомоторы. Обычные электрические моторы непрерывно вращают вал в одну или в другую сторону.
До недавнего времени писать веб приложения на веб фреймворке HappyX было возможно лишь с помощью Nim. На данный момент HappyX доступен и на Python. Любой желающий может воспользоваться библиотекой, если не знает Nim. В этой статье мы создадим фейковое API GitHub'а.
Предположим: вы полны желания изучить манящий массив данных. К счастью, для этого достаточно вашего компьютера. Итак, вы открываете блокнот Python или REPL, чтобы начать работать: какую библиотеку использовать?
Это моя первая статья и серия из статьей о написании мультиплеерной игры на Python с использованием библиотеки Pygame.