Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Сказать, что музыка является частью моей жизни, будет серьёзным преуменьшением. Я более 20 лет играю на гитаре, и каждый день слушаю других гитаристов. По правде говоря, прежде чем начать свой академический путь в качестве физхимика двенадцать лет назад, я был намерен строить музыкальную карьеру.
Лучшая функция Python, которая применяет эту философию из "дзен Python", - это декоратор.Декораторы могут помочь вам писать меньше кода для реализации сложной логики и повторно использовать его повсюду.Более того, существует множество замечательных встроенных декораторов Python, которые значительно облегчают нам жизнь, поскольку мы можем просто использовать одну строчку кода для добавления сложных функций к существующим функциям или классам.
В этой статье рассказываем про Tinkoff Invest API, объясняем, как написать робота на Python, и разбираем плюсы этого языка в сравнении с другими. А вместо заключения ловите гайд по созданию робота на примере работы победителя нашего конкурса Tinkoff Invest Robot Contest.
Мы хорошо знаем GAN за успехи в создании реалистичных изображений. Не так хорошо знаем о формировании табличных данных. Однако их возможно применять при одномоментной реализации табличных данных и изображений.
В своей статье я бы хотел осветить тему аудио мастеринга, а именно: автоматизированного онлайн-мастеринга музыки.Я расскажу о своём пути от продюсера психоделического транса до мейнтейнера самой популярной open source библиотеки автоматизированного референсного мастеринга на Python, получившей предупреждение от американской ассоциации звукозаписывающих компаний RIAA.
Для создания изображений с помощью GAN я буду использовать Tensorflow.
Генеративно-состязательная сеть (GAN) — это модель машинного обучения, в которой две нейронные сети соревнуются друг с другом, чтобы быть более точными в своих прогнозах.
Open-source проекты, сторонние инструменты и библиотеки - это то, за что мы действительно любим Python. В этой статье я собрал самые полезные, валидированные сообществом и проверенные временем инструменты, конфигурации которых можно встретить в популярных проектах с открытым исходным кодом.
Инструменты распределены по этапам/сферам разработки. По каждому из них я дам небольшое описание и попытаюсь рассказать о его пользе. Если утилита имеет дополнительные расширения/плагины, то я расскажу про самые полезные (на мой взгляд).
Всё началось примерно 10 лет назад, когда захотелось, чтобы вот этот вот контейнер выглядел прилично, не имел явно зазубренных граней, но при этом загружался за разумное время.
Могут ли современные алгоритмы создавать улучшенные версии старой графики видеоигр с более высоким разрешением?Последние несколько дней я использовал ИИ-генерацию изображений для воспроизведения одного из кошмаров моего детства. Я использовал Stable Diffusion, Dall-E и Midjourney, чтобы посмотреть, как эти инструменты генерации изображений могут помочь улучшить старую визуальную историю - вступительный фильм к старой видеоигре (Nemesis 2 на MSX). В этом посте описывается процесс и мой опыт использования этих моделей для улучшения графики.
В данной статье будет рассмотрено применение логистической регрессии, причинного случайного леса (Causal Random Forest), метода CUPED для оценки изменения целевой переменной в Python при проведении А/Б тестов. Основное внимание будет уделено практике, теоретические аспекты методов будут упомянуты вскользь.
Существует куча опенсорс и проприетарных решений, которые реализуют извлечение текста из PDF-документов. Зачем знакомиться с PyMuPDF? Постараемся ответить на этот вопрос, рассмотрим отличия PyMuPDF от других инструментов, и реализуем базовые действия в этой библиотеке.
Проект предназначен для генерации электронного кошелька, шифрование номера приватного кошелька и последующее его хранение на плате Wemos D1.
Эта статья - первая в цикле статей, в котором мы разберемся с тем, как qr-код устроен, и напишем простенький Qr-детектор и дешифровщик, а также свой собственный генератор qr-кодов
А теперь о том, что происходило в последнее время на других ресурсах.
Я хотел бы рассказать вам о том, как мы проводим тесты в нашем проекте, и поделиться опытом, возможно, логикой проведения и приведенными процессами вы сможете воспользоваться в ваших проектах, а python-фишечки по расчету fixed horizon и анализу результатов пригодятся в ваших исследованиях
Итак, некоторое время назад я писал статью о том, как мы переехали на werf со скрипта. По большому счёту, это продолжение той истории. Задача встала такая: нужно максимально автоматизировано разворачивать свежее приложение на нескольких кластерах kubernetes, которое уже имеет обвязку для деплоя в виде werf. После некоторых изысканий и попыток использовать "коробочные" решения самой верфи и куба, я понял, что придётся написать собственный оператор, чтобы получить прям 100% покрытия всех "хотелок".
FastAPI — это современная, быстрая (высокопроизводительная) веб-инфраструктура для создания API-интерфейсов с Python 3.7+ на основе стандартных подсказок типов Python. В этой статье мы рассмотрим как написать его с нуля.
Последние 10 лет я играл в такие игры, как TownsMen 6, Clash of the Clans, SimCity и мою любимую OpenTTD (с открытым исходным кодом!).
Попробовав City Island 5, я был раздражен от того, что предметы не накапливались, пока я находился вне игры. У меня может быть самый лучший бизнес, стратегия и т.д., но я должен быть в игре, чтобы обеспечить сбор денег/ключей/золота с течением времени. Например, если моя пекарня зарабатывает 100 евро в минуту, я заработаю 100 евро только после того, как выйду из игры и вернусь через 24 часа.
Это стало особенно утомительным, когда я пытался накопить €5 000 000, необходимых для покупки острова, показанного ниже. Это займет у меня примерно две недели игры, если я не буду тратить деньги - оно того не стоит!
Pandas - одна из наиболее используемых библиотек Python с открытым исходным кодом для работы со структурированными табличными данными для анализа. Однако он не поддерживает распределенную обработку, поэтому вам всегда придется увеличивать ресурсы, когда вам понадобится дополнительная мощность для поддержки растущих данных. И всегда наступит момент, когда ресурсов станет недостаточно. В данной статье мы рассмотрим, как PySpark выручает в условиях нехватки мощностей для обработки данных.
Сегодня, в четвёртой части (первая, вторая, третья) перевода учебного руководства по модулю asyncio в Python, представляем вашему вниманию разделы оригинала №8 и 9.