Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Данная статья представляет собой руководство по Poetry. Я постарался покрыть все основные сценарии использования и возможности данного инструмента: создание проекта, работа с зависимостями из различных источников, управление виртуальными окружениями, сборка и публикация.
В этой статье речь пойдет об эксперименте Voyager: An Open-Ended Embodied Agent with Large Language Models, в котором группа исследователей (Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, Anima Anandkumar ) дала GPT-4 поиграть в Minecraft.
При работе с большими коллекциями в MongoDB, размер которых превышал десятки миллионов записей, возникла необходимость формировать случайные выборки уникальных значений полей, принадлежащих документам этой коллекции.Для такой операции, в MongoDB штатно предусмотрена функция $sample, которую можно использовать в составе pipeline при проведении агрегации данных. Однако, как показала практика, выполнение выборки полей таким образом на большой коллекции может занимать весьма ощутимое время. Чтобы сократить время выполнения таких выборок, потребовалось разработать собственный алгоритм, который на порядки увеличил скорость работы. Ниже приведен подход и вариант реализации данного алгоритма.
В последнее время все большей популярностью пользуются различные чаты на основе ChatGPT. Они доступны не только в формате веб-версий или telegram-ботов, но и в виде отдельных приложений для разных платформ. В один прекрасный день я наткнулся на новое приложение под названием Bavarder, но интерфейс показался мне не очень удобным и наглядным, и я решил создать на основе этого приложения своё.
Как известно, для успешной работы системы детекции и классификации (СДК) с применением технологии компьютерного зрения необходим большой объем данных, в том числе разметка объектов на изображении. Такая предварительная подготовка трудоемка и длительна. До сих пор работа по разметке объектов для создания обучающей выборки проводится в ручном режиме, хотя уже применяется и определенная автоматизация. Один из возможных вариантов такой автоматизации и был рассмотрен в работе.
В этой статье расскажу о разработке типового фреймворка для тестирования API – на Python, с нуля, шаг за шагом. В итоге получим полностью готовый тестовый фреймворк – надеюсь, с его помощью вы сможете сделать тестовое задание для собеседования или просто улучшить ваш уже действующий тестовый фреймворк.
В прошлой части мы поговорили про эволюцию DETR. А это значит, что сегодня самая пора поговорить про другие варианты исполнения архитектуры и их нюансы.
А теперь о том, что происходило в последнее время на других ресурсах.
Развёртывание ПО, или деплой (deploy) — этап в разработке, в Devops в целом, это действия, которые делают ПО готовым к использованию. Если вы умеете в грамотный деплой, масштабирование и управление конвейерами (CI/CD), то ваш софт будет конкурентоспособным.
В предыдущих статьях мы рассказали, как создать фотогалерею с собственной поисковой системой [1,2]1. Но где нам найти изображения для нашей галереи? Нам придется вручную искать источники «хороших» изображений, а затем вручную проверять, является ли каждое изображение «хорошим». Можно ли автоматизировать обе эти задачи? Ответ — да.
Недавно на математический основах информатики в университете мы проходили задачу сетевого планирования, с помощью которой можно смоделировать процесс производства изделий. Мне была интересна данная тема и я решила поделиться с вами, как решить задачу сетевого планирования с использованием языка Python.
DVD – как много в этой аббревиатуре! Уверен, что вы наверняка помните такое явление, как ларьки и палатки с дисками, исчезнувшие только к началу 2010-х годов (по крайней мере так было в столице). В один из таких ларьков в конце 2009-го заглянул десятилетний я, внимание которого тут же привлекла коробка с надписью «3D Studio Max 2010»... Аниматором я, увы, так и не стал, однако интерес к области визуальных эффектов сохранился надолго.
В статье рассматриваются возможности контекстного менеджера языка Python, его роль в управлении ресурсами и обеспечении безопасного выполнения кода. Приводятся примеры использования контекстных менеджеров для работы с файлами, базами данных, потоками и сетевыми соединениями. Также обсуждается возможность создания собственных контекстных менеджеров и приводятся примеры простого и асинхронного контекстных менеджеров.
В предыдущей части мы частично разобрали шаблон для нашего блога, выбрали виртуальную машину и запустили на ней нативный веб-сервер Django. Однако он предназначен только для тестирования и запуска приложений во время разработки. Для обработки запросов в продакшене нужно настроить Nginx и WSGI Gunicorn. В этой статье показываем, как это сделать.
Перед тем как выпускать минимальный продукт, нужно проверить его востребованность на рынке. Как правило, наши представления о рынке не соответствуют реальности, отчего очень легко попасть в ситуацию, когда бюджет реализован, какой-то минимальный продукт готов, а трафик отсутствует. Для таких случаев и существует CustDev.
Возможно, вы прочитали название статьи и подумали, что попали на программу «В мире животных». Но нет, речь пойдет о сравнении двух гигантов аналитики данных в Python: Pandas и Polars. В этой статье мы подробно рассмотрим вопрос быстродействия этих двух решений в части работы с файлами больших объемов.
На предыдущем уроке я рассказал о своем пэт-проекте, связанном с компьютерным зрением. В этом уроке вы познакомились идей и наброском архитектуры этого пэт-проекта. Сегодня продолжу описывать, как я добавлял в проект новые классы и что из этого вышло. Напомню, что идея состояла в том, чтобы написать полноценный конвейер обработки изображений, начав с простой задачи, например, распознавание номеров. В результате эксперимента выяснилось, что известная библиотека для распознавания символов tesseract плохо распознает цифры. Было принято решение написать какую-то свою распознавалку для цифр. Но сначала надо как-то найти, где эти цифры расположены на изображении.
Дело было так: смотрел я как-то в окно и увидел, как человек сидит в машине на парковке и ждет, когда освободится парковочное место. Бывает, что и я сижу в машине и жду, когда же можно будет припарковать своего верного коня. И тут я подумал, а почему бы не подключить Компьютерное Зрение для этого? Зачем я учился разработке нейросетей, если не могу заставить компьютер работать вместо меня?
Недавно мы поделились с вами нашим пайплайном разработки линейных моделей для решения задач бинарной классификации. Теперь же мы решили поведать о нашем опыте построения моделей градиентного бустинга. За последнее время команда проделала колоссальную работу: мы протестировали различные методы отбора факторов, нашли новые инсайты в данных, провели интересную (а, главное, полезную!) аналитическую работу и решили несколько Ad-hoc задач.
Безопасность является важной темой в нашей современной жизни, особенно в общественных местах, таких как аэропорты, вокзалы и торговые центры. Одним из распространенных методов обеспечения безопасности является проверка сумок на проходной. Но, как говорится, кто устережёт самих сторожей? Могут ли современные технологии компьютерного зрения наблюдать за охранниками как они за нами?