Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Если вы только начинаете изучать Python и слышите слово дженерики, скорее всего в голове сразу каша: «что это вообще такое?». На самом деле дженерики - это очень простая идея. Представьте, что у вас есть коробка. В коробку можно положить игрушки, яблоки, книжки - всё что угодно.Но иногда вы хотите, чтобы в коробке лежали только яблоки. А иногда - только игрушки. И вот тут вам помогают generics.
Сегодня доклад будет максимально простыми словами, будто сидим, пиво пьем, рыбку едим, потому что необычайно сложный контент. Но я хочу, чтобы вы выключили полностью мозги, расслабились, получили удовольствие и читали сердцем. Все это делал я, Александр Сербул, с небольшой командой. Моя задача — возбудить в вас интерес к Rust, высоким нагрузкам, асинхронщине, многопоточности и тому, как мы это используем.
В этой статье рассмотрим, как с помощью Python собирать и обрабатывать новости с сайта, имеющего RSS.В нашей статье мы создадим скрипт на Python, который за заданный период (например, за последние 4 часа) соберёт все записи из нескольких лент сайта BBC, отфильтрует их по ключевому слову «Трамп» и опубликует итоговый подбор в наш Telegram-канал.
Несколько лет назад наш корпоративный слой данных жил на проприетарных технологиях. Данных было много, а основная СУБД — MPP-система Sybase IQ — долго не обновлялась. Мы регулярно сталкивались с тем, что у кластера «падали» ноды, каталог базы повреждался, порой даже терялись данные, а вендор не спешил выпускать исправления или даже признавать проблему.
В этой статье будет рассказано об эмббедингах и методах работы с ними. Расскажу немного математики и приведу много примеров на Python.
Работая с геоданными, я регулярно сталкиваюсь с одной и той же проблемой - обилие рутины. Форматы не совпадают, координаты «прыгают», отчёты приходится собирать вручную. Даже если речь идёт о небольшом проекте, половина времени уходит не на сам анализ, а на подготовку и приведение данных к нужному виду.
не буду называть слово вайб кодинг, хотя проект написан почти полностью DeepSeek, но суть гайда не в этом.оставлю пища для размышлений и задел на развитие бота
Ночью (а точнее уже утром), я не мог уснуть, из-за навязчивой мысли в голове..А что если спарсить часть статей с хабра и представить их в виде obsidian графа, будет ли это выглядеть, как красивая база знаний?
Кольца Барромео — это конструкция из трёх колец, обладающая интересным свойством: эти кольца не сцеплены попарно между собой, но полная конструкция из трёх колец неразделима. Ну или если перефразировать: вся конструкция неразделима, но если любое из колец магическим образом пропадает, то оставшиеся два можно разделить.
Перевод статьи о том, как автор выбирает способ написания представлений в Django. Он считает, что обобщённые классовые представления (CBV) скрывают слишком много магии, усложняют чтение кода и отладку. Вместо них он использует базовый View, чтобы сохранять контроль, но при этом избегать громоздких if в функциях.
MSK144 — цифровой протокол, разработанный Джо Тейлором (K1JT) и его командой в 2016 году для проведения связей через метеорное рассеивание. В этой статье будут рассмотрены подробности работы протокола.Статья может быть интересна радиолюбителям, как знакомым, так и не знакомым с MSK144 и связью через метеорное рассеивание, а также тем, кто хочет понять устройство этого протокола.
Сегодня я хочу поделиться историей одной, казалось бы, простой задачи, которая превратилась в увлекательное техническое расследование. Мы разрабатывали утилиту для стеганографии ChameleonLab и решили добавить поддержку современных форматов изображений, таких как WebP и AVIF. С WebP все прошло гладко, но AVIF оказался на удивление крепким орешком.
Хотел написать классическую статью, ни разу не писал, ради интереса попросил ChatGPT и она все написала, стало скучно до жути, эта «классическая » статья будет под спойлером, она реально по теме, написана с двух запросов, а далее будет кратенько и технически что и зачем, со ссылками на примеры. Для технической части нужны знания python, llm, cuda и что такое OpenAI API.
А теперь о том, что происходило в последнее время на других ресурсах.
При проектировании RAG-системы инженер каждый раз сталкивается со множеством вопросов: какую базу данных использовать, как организовать получение релевантной информации, да даже выбор эмбеддера может занять приличное время, а это лишь вершина айсберга. Что хорошо работает в одной сфере, например в техподдержке, может полностью провалиться в другой — например, при анализе юридических документов.
Субагенты в Claude Code — обзор вопроса и немного деталей.Расскажу про одну из самых примечательных фич Claude Code — инструмент Суб‑Агентов (Sub‑Agents), чем он отличается от обычного Task, и как его можно использовать для создания своих систем на базе ИИ агентов.
Я обожаю копаться в данных своих тренировок из Strava: анализировать мощность, пульсовые зоны, темп. Но мне всегда не хватало одной вещи — единой, понятной и, главное, прозрачной метрики, которая бы отвечала на простой вопрос: "А насколько я сейчас в хорошей форме?".В этой статье я расскажу, как устроен этот механизм "под капотом".
В своей статье я последовательно пройдусь от истории библиотеки Polars до примеров кода, технических аспектов ее производительности и в конце дам ссылки на все бенчмарки, обучающие материалы и дополнительные статьи, которые использовались для написания данного обзора-туториала по этой замечательной библиотеке.
В первые дни, проведённые в офисе, я ощутил всю прелесть онбординга в нефтянку. Тогда для меня каждое второе слово от коллег являлось новым и приходилось жёстко гуглить. УЭЦН, ПЭД, МРП, КВЧ, загрузка, НГДП, кусты, ВНР... Мне казалось, я попал в параллельную вселенную, где говорят на странном техническом диалекте. Мой наставник, видя мои широко открытые глаза только улыбался и говорил: «Ничего, через неделю всё поймёшь. Главное выучи, что такое VLP и IPR».
В основном моделирование развития пожара провожу в специализированном программном обеспечении Fire Dynamics Simulator (FDS), оно используется от Японии до США при обосновании отступлений требований пожарной безопасности. При моделировании развития пожара очень много времени занимает обработка результатов моделирования.