Собрали в одном месте самые важные ссылки
консультируем про IT, Python
RoBERTa — улучшенная версия модели BERT, разработанная Facebook AI. Она показывает отличные результаты в задачах обработки естественного языка, таких как классификация текстов и генерация ответов.Построим конкурентоспособный сайт расстановки пунктуации, обучив свою нейронную сеть.
В этой статье мы хотим поделиться опытом разработки экосистемы (если есть слово поудачнее, то обязательно поделитесь в комментариях) сервисов для упрощения процесса разработки моделей и решений по CV.
Предварительная обработка текстовых данных: ключевые этапы и методыТекстовые данные — один из самых сложных типов данных для анализа из-за их неструктурированной природы и высокой вариативности. Чтобы превратить "сырой" текст в информацию, пригодную для машинного обучения или лингвистического анализа, требуется предварительная обработка.
Год назад мне пришлось взять на себя курс лекций по теории компиляторов. Вы встречались некомпетентными преподавателями? Это я, здравствуйте! Прежде чем учить других, я всё-таки решил заглянуть в учебник сам, и это вылилось в серию статей "компилятор за выходные" (да, я помню, что за мной должок с описанием лексера/парсера). В итоге я уложил компилятор со мной придуманного си-подобного языка на GNU ассемблер в шестьсот строк кода, причём без внешних зависимостей, включая парсинг.
А теперь о том, что происходило в последнее время на других ресурсах.
СМОТРИТЕ КОММЕНТАРИИ!
В данной статье я хочу представить выстраданную годами структуру проекта и организацию его окружения, которые помогают избежать большей части проблем, связанных с локальным разворачиванием проекта.Пример будет представлен для Django проекта и PDM в качестве менеджера зависимостей, но концептуально должен подходить для любого проекта на любом языке и с любым набором сервисов.
Если вам приходилось писать высоконагруженные сетевые приложения на Python, то вы, скорее всего, сталкивались с тем, что стандартные механизмы работы с вводом‑выводом — select(), poll() и даже asyncio — не справляются с большой нагрузкой.
Сегодня разберем два популярных инструмента — Msgspec и DataClasses. Оба помогают структурировать данные, добавить энтерпрайзности в проект, но подходы у них разные. Какой из них быстрее и удобнее, где их лучше применять?
Алгоритм Краскала — это жадный алгоритм, который используется для нахождения минимального остовного дерева (MST) в связном, взвешенном и неориентированном графе. В контексте генерации лабиринтов он применяется для создания структуры, где каждая ячейка соединена с другими без циклов и недостижимых областей. В результате получается так называемый "идеальный лабиринт", в котором из любой точки можно попасть в любую другую по единственному пути.
При разработке приложений на основе больших языковых моделей (LLM, Large Language Model) встает вопрос: вызывать ли модель напрямую через API (например, OpenAI) или использовать специализированные фреймворки вроде LangChain или LangGraph.
Если вы когда-нибудь занимались машинным обучением, то знаете — перед тем как строить модель, нужно как следует изучить свои данные. Этот этап называется EDA (Exploratory Data Analysis), или разведочный анализ данных (РАД). Он критически важен — именно здесь мы находим скрытые закономерности, выдвигаем первые гипотезы и понимаем, как лучше обработать данные для будущей модели.
Современные крупные языковые модели, такие как ChatGPT, Claude или Gemini, поражают своими возможностями. Но главный вопрос остаётся открытым: как именно они думают?
А теперь о том, что происходило в последнее время на других ресурсах.
Немного вызывающее название статьи отсылает к известной работе Внимание - всё, что вам нужно. На этот раз речь пойдет о качестве данных, на которых обучают LLM. Оказывается, качественный учебник (как концентрат знаний в любой сфере) в разы сокращает потребность и в памяти, и в мощности GPU, и в деньгах инвесторов...
Nvidia Triton Server - технология, которая значительно упрощает запуск моделей машинного обучения и их использование в веб-приложениях.
Одной из распространенных задач в веб-приложениях является создание формы, в которую можно вводить заранее неопределённое количество элементов. Этот подход часто используется при вводе пользовательской информации, например, телефонных номеров или адресов. В примере ниже можно увидеть, как пользователь динамически добавляет дополнительные телефонные номера в форму, нажимая на кнопку "Add another".
В данной статье будет мало рассуждений и историй о механике роботов и процессе разработки приводов и корпуса. Будет обзор именно того, как я разрабатывал программную часть, и того, как быстро на самом деле происходит обучение на реальном проекте.
Иногда возникают вопросы, в которых нейросети помогают подумать в правильном направлении, или дают «инсайты». Но спрашивать у каждой сетки одно и то же отдельно может быть долго и неудобно. Сегодня мы напишем бота, который умеет работать сразу с несколькими нейросетями (в дальнейшем вы можете добавить больше моделей, чем будет предоставлено в статье) и получать от них ответы в едином интерфейсе.
В этой статье мы познакомимся с Apache Kafka. Мы напишем демо пример Kafka Consumer'а на Python и запустим его в облачном сервисе
В этой статье хочу вам рассказать про задачу, которая долгое время была проблемой для многих наших студентов. В том числе расскажу про несколько вариантов решения и о том, как их можно доработать.Также я дам решение с помощью теории графов, основная сложность которого заключается в чтении входных данных.