10.11.2018       Выпуск 255 (05.11.2018 - 11.11.2018)       Интересные проекты, инструменты, библиотеки

pampy - Pattern Matching


Экспериментальная функция:

Ниже вы видите текст статьи по ссылке. По нему можно быстро понять ссылка достойна прочтения или нет

Просим обратить внимание, что текст по ссылке и здесь может не совпадать.

Pampy in Star Wars

Pampy: Pattern Matching for Python

License MIT Travis-CI Status Coverage Status PyPI version

Pampy is pretty small (150 lines), reasonably fast, and often makes your code more readable, and easier to reason about.

You can write many patterns

Patterns are evaluated in the order they appear.

You can write Fibonacci

The operator _ means "any other case I didn't think of".

from pampy import match, _

def fibonacci(n):
    return match(n,
        1, 1,
        2, 1,
        _, lambda x: fibonacci(x-1) + fibonacci(x-2)

You can write a Lisp calculator in 5 lines

from pampy import match, REST, _

def lisp(exp):
    return match(exp,
        int,                lambda x: x,
        callable,           lambda x: x,
        (callable, REST),   lambda f, rest: f(*map(lisp, rest)),
        tuple,              lambda t: list(map(lisp, t)),

plus = lambda a, b: a + b
minus = lambda a, b: a - b
from functools import reduce

lisp((plus, 1, 2))                 # => 3
lisp((plus, 1, (minus, 4, 2)))     # => 3
lisp((reduce, plus, (1, 2, 3)))     # => 6

You can match so many things!

    3,              "this matches the number 3",

    int,            "matches any integer",

    (str, int),     lambda a, b: "a tuple (a, b) you can use in a function",

    [1, 2, _],      "any list of 3 elements that begins with [1, 2]",

    {'x': _},       "any dict with a key 'x' and any value associated",

    _,              "anything else"

You can match [HEAD, TAIL]

from pampy import match, HEAD, TAIL, _

x = [1, 2, 3]

match(x, [1, TAIL],     lambda t: t)            # => [2, 3]

match(x, [HEAD, TAIL],  lambda h, t: (h, t))    # => (1, [2, 3])

TAIL and REST actually mean the same thing.

You can nest lists and tuples

from pampy import match, _

x = [1, [2, 3], 4]

match(x, [1, [_, 3], _], lambda a, b: [1, [a, 3], b])           # => [1, [2, 3], 4]

You can nest dicts. And you can use _ as key!

pet = { 'type': 'dog', 'details': { 'age': 3 } }

match(pet, { 'details': { 'age': _ } }, lambda age: age)        # => 3

match(pet, { _ : { 'age': _ } },        lambda a, b: (a, b))    # => ('details', 3)

It feels like putting multiple _ inside dicts shouldn't work. Isn't ordering in dicts not guaranteed ? But it does because in Python 3.7, dict is an OrderedDict by default

You can match class hierarchies

class Pet:          pass
class Dog(Pet):     pass
class Cat(Pet):     pass
class Hamster(Pet): pass

def what_is(x):
    return match(x,
        Dog, 		'dog',
        Cat, 		'cat',
        Pet, 		'any other pet',
          _, 		'this is not a pet at all',

what_is(Cat())      # => 'cat'
what_is(Dog())      # => 'dog'
what_is(Hamster())  # => 'any other pet'
what_is(Pet())      # => 'any other pet'
what_is(42)         # => 'this is not a pet at all'

All the things you can match

As Pattern you can use any Python type, any class, or any Python value.

The operator _ and types like int or str, extract variables that are passed to functions.

Types and Classes are matched via instanceof(value, pattern).

Iterable Patterns match recursively through all their elements. The same goes for dictionaries.

Pattern ExampleWhat it meansMatched ExampleArguments Passed to functionNOT Matched Example
"hello"only the string "hello" matches"hello"nothingany other value
Noneonly NoneNonenothingany other value
intAny integer4242any other value
floatAny float number2.352.35any other value
strAny string"hello""hello"any other value
tupleAny tuple(1, 2)(1, 2)any other value
listAny list[1, 2][1, 2]any other value
MyClassAny instance of MyClass. And any object that extends MyClass.MyClass()that instanceany other object
_Any object (even None)that value
ANYThe same as _that value
(int, int)A tuple made of any two integers(1, 2)1 and 2(True, False)
[1, 2, _]A list that starts with 1, 2 and ends with any value[1, 2, 3]3[1, 2, 3, 4]
[1, 2, TAIL]A list that start with 1, 2 and ends with any sequence[1, 2, 3, 4][3, 4][1, 7, 7, 7]
{'type':'dog', age: _ }Any dict with type: "dog" and with an age{"type":"dog", "age": 3}3{"type":"cat", "age":2}
{'type':'dog', age: int }Any dict with type: "dog" and with an int age{"type":"dog", "age": 3}3{"type":"dog", "age":2.3}

Using strict=False

By default match() is strict. If no pattern matches, it raises a MatchError.

You can prevent it using strict=False. In this case match just returns False if nothing matches.

>>> match([1, 2], [1, 2, 3], "whatever")
MatchError: '_' not provided. This case is not handled: [1, 2]

>>> match([1, 2], [1, 2, 3], "whatever", strict=False)


Currently it works only in Python > 3.6 Because dict matching can work only in the latest Pythons.

I'm currently working on a backport with some minor syntax changes for Python2.

To install it:

$ pip install pampy

or $ pip3 install pampy

Разместим вашу рекламу

Пиши: mail@pythondigest.ru

Нашли опечатку?

Выделите фрагмент и отправьте нажатием Ctrl+Enter.

Система Orphus