Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Прошлые пару недель были весьма непростыми. Мы опубликовали первую и вторую части наших статей по поводу классификации покрова в масштабе целой страны при помощи фреймворка eo-learn. eo-learn — это библиотека с открытым исходным кодом для создания прослойки между получением и обработкой снимков со спутников и машинного обучения. В предыдущих статьях в примерах мы указывали только маленькое подмножество данных и показывали результаты лишь на малом проценте всей зоны интереса (AOI — area of interest). Знаю, это выглядит по меньшей мере не слишком впечатляюще, а возможно — весьма грубо с нашей стороны. Всё это время вас мучили вопросы, как можно использовать эти знания и перенести их на следующий уровень.