29.03.2021       Выпуск 380 (29.03.2021 - 04.04.2021)       Статьи

Анимация волновой функции частицы Шрёдингера (ψ) с помощью Python (с полным кодом)

Двойственная природа материи — широко известное понятие среди физиков. Вещество на атомном уровне в некоторых случаях ведёт себя как частицы, а в некоторых — как волны. Чтобы объяснить это, мы вводим волновую функцию частицы ψ(x, t), которая описывает не фактическое положение частицы, а вероятность нахождения частицы в данной точке. Волновая функция ψ(x, t), или поле вероятностей, которое удовлетворяет, возможно, самому важному уравнению в частных производных, по крайней мере для физиков, является уравнением Шрёдингера.

Читать>>




Экспериментальная функция:

Ниже вы видите текст статьи по ссылке. По нему можно быстро понять ссылка достойна прочтения или нет

Просим обратить внимание, что текст по ссылке и здесь может не совпадать.

Двойственная природа материи — широко известное понятие среди физиков. Вещество на атомном уровне в некоторых случаях ведёт себя как частицы, а в некоторых — как волны. Чтобы объяснить это, мы вводим волновую функцию частицы ψ(x, t), которая описывает не фактическое положение частицы, а вероятность нахождения частицы в данной точке. Волновая функция ψ(x, t), или поле вероятностей, которое удовлетворяет, возможно, самому важному уравнению в частных производных, по крайней мере для физиков, является уравнением Шрёдингера.

Одномерное уравнение Шрёдингера

Мы рассмотрим уравнение Шрёдингера в одном измерении. Метод решения волновой функции в двух или трёх измерениях в основном такой же, как и для одномерного. Но для визуализации и ради экономии времени мы будем придерживаться одного измерения. Выведем уравнение Шрёдингера для одномерного случая.

Решение частицы в ящике методом Кранка — Николсон

Решим волновое уравнение для нашей частицы, находящейся в ящике с непроницаемыми стенками. Идея состоит в том, чтобы решить уравнение в пространстве конечного размера. Но почему в непроницаемых стенах? Это условие заставляет волновую функцию равняться нулю на стенках, что мы положим при x=0 и x=L. Мы заменим вторую производную в уравнении Шрёдингера конечной разностью и применим метод Эйлера.

Приведённый выше вывод позволяет нам рекурсивно решить уравнение Шрёдингера. Граничные условия при x=0 и x=L для всех t волновая функция ψ(x, t)=0. Между этими точками у нас есть точки сетки в точках a, 2a, 3a и так далее. Сгруппируем значения ψ(x, t) в этих внутренних точках в вектор.

Теперь всё просто, у нас есть функция распространения: Aψ(t + h) = Bψ(t), где матрицы A и B являются симметричными и трёхдиагональными. Нам нужно будет инициализировать волновую функцию на временном шаге t = 0, ψ(0). Используя функцию распространения, мы можем аппроксимировать ψ(h), а затем, используя ψ(h), мы можем аппроксимировать ψ(2h) и так далее. В момент t = 0 волновая функция ψ(0) частицы имеет вид:

Это выражение для ψ(0) не нормализовано, и действительно должен быть общий коэффициент умножения, чтобы гарантировать, что плотность вероятности для частицы интегрируется в единицу.

Анимация волновой функции частицы в коробке

Мы попробуем оживить частицу в коробке с непроницаемыми стенками, используя метод Кранка — Николсон. Нам нужно будет вычислить вектор ψ(x, t) на всех временных шагах по сетке, учитывая начальную волновую функцию ψ(0) и используя пространственные срезы (N = 1000) с длиной среза = L/N.

Длинная простыня с кодом
import numpy  as np
from pylab import *
from matplotlib import pyplot as plt
from matplotlib import animation
#matplotlib.use('GTK3Agg') 

# from matplotlib import interactive
# interactive(True)

########################################Variables######################################################################################################
N_Slices = 1000            #Number of slices in the box 
Time_step = 1e-18          #Time step for each iteration 
Mass = 9.109e-31           #mass of electron 
plank = 1.0546e-36         #Planks constant 
L_Box = 1e-9           #Length of the box
Grid = L_Box/N_Slices                             #Lenght of each slice 

#####################################Si(0) using the given equation ###############################################################################


Si_0 = np.zeros(N_Slices+1,complex)                        #Initiating Si funtion at time step = 0 
x = np.linspace(0,L_Box,N_Slices+1)                            
def G_Equation(x):
    x_0 = L_Box/2
    Sig = 1e-10
    k = 5e10
    result  = exp(-(x-x_0)**2/2/Sig**2)*exp(1j*k*x)       #Given Equation at t = 0
    return result
Si_0[:] = G_Equation(x)                                     #Si funtion at time step = 0           


#######################################V = Bxsi(0)################################################################################
a_1 = 1 + Time_step*plank*1j/(2*Mass*(Grid**2))   #Diagonal of A Tridiagonal matrix
a_2 = -Time_step*plank*1j/(4*Mass*Grid**2)        #Up and Down to A Tridiagonal matrix
b_1 =  1 - Time_step*plank*1j/(2*Mass*(Grid**2))  #Diagonal of B Tridiagonal matrix
b_2 =  Time_step*plank*1j/(4*Mass*Grid**2)        #Up and Down to B Tridiagonal matrix



BxSi_0 = []                                                      #V = BxSi and si funtion at x = 0
for i in range(1000):
    if i == 0:
        BxSi_0.append(b_1*Si_0[0] + b_2*(Si_0[1]))                   #V can be maipulated by the equation in Text book          
    else:                                                     
        BxSi_0.append(b_1*Si_0[i] + b_2*(Si_0[i+1] + Si_0[i-1]))
BxSi_0 = np.array(BxSi_0)

#####################################Tri Diagonal matrix algorithm#####################################################################################

def TDMAsolver(a, b, c, d):                                   #Instead of solving using Numpy.linalg, it is prefered to Use 
    nf = len(d)                                               #Tri Diagonal Matrix algorithm 
    ac, bc, cc, dc = map(np.array, (a, b, c, d))              # a,b,c's are up,dia,down element in tridiagonl matrix A
    for it in range(1, nf):                                  #AX = d
        mc = ac[it-1]/bc[it-1]
        bc[it] = bc[it] - mc*cc[it-1] 
        dc[it] = dc[it] - mc*dc[it-1]
        	    
    xc = bc
    xc[-1] = dc[-1]/bc[-1]

    for il in range(nf-2, -1, -1):
        xc[il] = (dc[il]-cc[il]*xc[il+1])/bc[il]
    return xc


global a                    #A matrix is fixed through out the problem, so it is good to globalize the variables 
global b
global c
b = N_Slices*[a_1]          #In A matrix, Both  Up,Down elements are a_2 and diag matrix is a_1
a = (N_Slices-1)*[a_2]
c = (N_Slices-1)*[a_2]
####################################Si 1st funtion solver####################################################################################

global Si_1                                 #First si_funtion usinf Axsi(0+h) = BxSi(0)
Si_1 = TDMAsolver(a, b, c, BxSi_0)          #This can be solved by TDM(A,BxSi(0))


###################################A funtion which caliculates si at each step#####################################################################################
global Si_sd                            #AxSi_stepup = BxSi_stepdown
Si_sd = {}                              #At first Buckting Si_stepdown in to directry which we can using for finding Si_stepup 
def sifuntion(i):                       #In next iteration, Last iteration Si_stepup will be this iteration's Si_stepdown
    if i == 0:
        Si_sd[0] = Si_1
        return Si_1
    else:
        Si_stepdown = Si_sd[i-1]
        V = np.zeros(N_Slices,complex)
        V[0] = b_1*Si_stepdown[0] + b_2*(Si_stepdown[1])
        V[1:N_Slices-1] = b_1*Si_stepdown[1:N_Slices-1] + b_2*(Si_stepdown[2:N_Slices] + Si_stepdown[0:N_Slices-2])
        V[N_Slices-1] = b_1*Si_stepdown[N_Slices-1]+ b_2*(Si_stepdown[N_Slices-2])
        Si_stepup = TDMAsolver(a, b, c, V)
        Si_sd[i] = Si_stepup 
        x = Si_stepup.real
        return x
####################################Animating#######################################################################################
    

fig = plt.figure()
ax = plt.axes(xlim=(0, 1000), ylim=(-1.5, 1.5))
line, = ax.plot([], [], lw=5)
ax.legend(prop=dict(size=20))
ax.set_facecolor('black')
ax.patch.set_alpha(0.8)
ax.set_xlabel('$x$',fontsize = 15,color = 'blue')
ax.set_ylabel(r'$|\psi(x)|$',fontsize = 15,color = 'blue')
ax.grid(color = 'blue')
ax.set_title(r'$|\psi(x)|$ vs $x$', color='blue',fontsize = 15 )
line, = ax.step([], [])

def init():
    line.set_data([], [])
    return line,


def animate(i):
    x = np.linspace(0, 1000, num=1000)
    y = sifuntion(i)
    line.set_data(x, y)
    line.set_color('red')
    return line,

anim = animation.FuncAnimation(fig, animate, init_func=init,
                               frames=10**5, interval=1, blit=True)#5*10**5

plt.vlines(1, -5, 5, linestyles = 'solid', color= 'green',lw=5)
plt.vlines(999, -5, 5, linestyles = 'solid', color= 'green',lw=5)
plt.text(1,1,'Boundary',rotation=90,color= 'green' )
plt.text(975,1,'Boundary',rotation=90,color= 'green' )
plt.figure(figsize=(10,10))
plt.show()   

# Writer = animation.writers['ffmpeg']
# writer = Writer()
# anim.save('im.mp4', writer=writer)

Узнайте, как прокачаться в других специальностях или освоить их с нуля:

Другие профессии и курсы





Разместим вашу рекламу

Пиши: mail@pythondigest.ru

Нашли опечатку?

Выделите фрагмент и отправьте нажатием Ctrl+Enter.

Система Orphus