16.06.2021       Выпуск 391 (14.06.2021 - 20.06.2021)       Статьи

Твиттер Илона Маска в телеграме и с переводом на русский

Хочу поделиться одной моей поделкой, возможно, кому-то она тоже будет полезна. В этой статье я поделюсь тем, что я сделал, чтобы читать Twitter-аккаунт Маска в удобном мне месте и имея под рукой перевод англоязычных твитов на русский.

Читать>>




Экспериментальная функция:

Ниже вы видите текст статьи по ссылке. По нему можно быстро понять ссылка достойна прочтения или нет

Просим обратить внимание, что текст по ссылке и здесь может не совпадать.

Хочу поделиться одной моей поделкой, возможно, кому-то она тоже будет полезна. В этой статье я поделюсь тем, что я сделал, чтобы читать Twitter-аккаунт Маска в удобном мне месте и имея под рукой перевод англоязычных твитов на русский.

Проблема

Последние несколько лет замечаю за собой, что хочу начать регулярно почитывать тот или иной блог, но если он не находится в зоне удобного или привычного доступа (к сожалению весь твиттер для меня таков, ничего не могу с собой поделать, не читатель я твиттера), то я довольно быстро забиваю на это. Еще хуже, если блог на другом языке, тут появляется дополнительная проблема, когда из-за технических терминов или разговорного жаргона сложно понять смысл. Собственно такие "преграды" обычно и приводят к тому, что вроде бы и хочется, но как-то не делается.

Идея

Сейчас я делаю на заказ программных роботов, которые в онлайне обрабатывают новостные потоки в соцсетях, фильтруют, выбирают наиболее интересные и цитируемые, и передают заказчику. Я подумал, почему бы мне не использовать свои навыки и не облегчить себе жизнь в описанной выше проблеме. Для этого нужно только каждые сколько-то минут заходить в твиттер, забирать новые сообщения, прогонять их через переводчик и отправлять в канал в телеграме. Кажется, ничего сложного.

Подводные камни

Первая проблема, с которой я столкнулся, это фрилансеры, у которых я пытался заказать кусок кода, который непосредственно выгружает новые посты из твиттера, все подряд отказывались от выполнения заказа. Прямо брали, а потом у одного компьютер сломался, у другого появились другие дела, третий в последний момент передумал.

Вторая проблема, отказ твиттера в выдаче доступа к API в описанных мной кейсах. То есть остается единственный вариант заниматься веб-скраппингом. Ну что ж.

Третья проблема, оказалось, что требуется довольно много ручной работы, чтобы преобразовать пост из твиттера в формат телеграма, и чтобы он прилично выглядел. В частности, картинки, предпросмотры ссылок, упоминания и тд.

Технологии

Я решил попробовать самостоятельно и начал гуглить что-то вроде "parsing twitter without API". Нашлось достаточно много решений, сразу скажу, что решение twint — библиотека с открытым исходным кодом, которая вполне работоспособна и подошла под мою задачу.

Для того, чтобы перевести текст с английского на русский, я сначала было собирался использовать google translate, но понимал, что в нем ограниченное количество бесплатных переводов, решил что попробую использовать единственную известную мне нейросеть для перевода с английского на русский fairseq от Facebook AI Research. Качество перевода показалось мне вполне приемлемым с точки зрения того, чтобы понять в чем суть твита, хотя оно и не было идеальным.

Все это я обернул в скрипт на языке программирования python и запустил на постоянную работу на своем сервере.

Примеры кода

Чтобы собрать данные из твиттера без использования выделенных девелоперских доступов, логинов, паролей и API, нужно сделать следующее:

Установить библиотеку twint

pip3 install twint

Запустить код формата

twint -u <name_of_twitter_user> -o output.csv --csv --since 2020-01-01 --retweets

Здесь есть важный момент, что запускается это все из-под bash, при том что у библиотеки есть python API (да и написана она на питоне), но при этом я потратил довольно много времени и оно ни в какую не заводилось. При этом если запускать из командной строки - все кроме автоматического перевода постов у меня работало.

Из функционала, который есть у библиотеки еще отмечу:

twint -u username -s pineapple
twint -u username --email --phone
twint -g="48.880048,2.385939,1km" -o file.csv --csv
twint -u username -es localhost:9200
twint -u username --database tweets.db
twint -u username --followers
twint -u username --following
twint -u username --favorites

Данные сохраняются в csv файл, в котором присутствуют такие поля как (перечислю те, которые использовал сам, так как их много и большинство несут мало информации):

id - идентификатор сообщения

conversation_id - идентификатор беседы

created_at - дата создания сообщения

tweet - текст сообщения

mentions - упоминания пользователей твиттера ( список словарей)

urls - вставленные по правилам твиттера ссылки (например на youtube)

photos - ссылки на картинки

link - ссылка на твит

reply_to - список словарей с пользователямя, ответом на твиты которых является твит

У библиотеки есть также возможность перевода на другой язык, но она у меня совсем не заработала. Собственно по этой причине я искал другую возможность. Нашел я, как упоминал выше, открытую разработку Facebook AI Research - библиотеку fairseq, в которой можно скачать веса нейронки для перевода в частности из английского в русский и наоборот.

pip install hydra-core

Итого необходимо было установить:

pip install torch 
pip install hydra-core==1.0.0 omegaconf==2.0.1
pip install fastBPE regex requests sacremoses subword_nmt 

Вообще мануал по установке и пример использование есть на сайте pytorch, но как видите у меня он немного отличается. Для того, чтобы сделать перевод можно пользоваться следующим куском из примера - он вполне рабочий:

import torch

# Compare the results with English-Russian round-trip translation:
en2ru = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-ru.single_model', 
                       tokenizer='moses', bpe='fastbpe')
ru2en = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.ru-en.single_model', 
                       tokenizer='moses', bpe='fastbpe')

paraphrase = ru2en.translate(
  en2ru.translate('PyTorch Hub is an awesome interface!')
)
assert paraphrase == 'PyTorch is a great interface!'

В нем два раза производится перевод и проверяется соотвествие результата исходному варианту. При первом запуске с серверов torch хаба выкачивается большая нейронка, которая довольно шустро работает и на процессоре.

В целом, если не считать способов использования библиотек, у меня набралось еще довольно много кода, чтобы делать полученные сообщения достаточно читабельными, но это уже детали моего применения.

Как пользоваться

Выглядит сейчас это следующим образом. Каждый твит и ретвит на главной странице твиттера Илона Маска пропускается через переводчик, подбираются ссылки и картинки из поста, дальше все это сохраняется в пост в телеграм-канале. Выглядит это так

Итого у меня получился телеграм-канал под названием "Твиттер Илона Маска" (подписывайтесь, мне будет приятно, что это нужно кому-то еще ​, будет дополнительный стимул поддерживать в будущем), в котором можно

1) читать новые и старые посты Илона Маска

2) видеть перевод текста на русский язык

3) перейти по ссылке на исходный пост в твиттере

И все это без регистрации и смс.

Если эта статья показалась вам интересной, поставьте, пожалуйста апвоут (так ее увидит больше людей) и подписывайтесь на мой блог в телеграме, там я ежедневно рассказываю о всех своих экспериментах. Если хотите решить похожую проблему для своего бизнеса — пишите в личку.






Разместим вашу рекламу

Пиши: mail@pythondigest.ru

Нашли опечатку?

Выделите фрагмент и отправьте нажатием Ctrl+Enter.

Система Orphus