Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Следует отметить, что методы решения задач линейного программирования относятся не к экономике, а к математике и вычислительной технике. При этом экономисту нужно обеспечить максимально комфортные условия диалога с соответствующим программным обеспечением. В свою очередь такие условия могут обеспечивать только динамично развивающиеся и интерактивные среды разработки, имеющие в своём арсенале набор необходимых для решения таких задач библиотек. Одной из каких сред разработки программного обеспечения безусловно является Python.
Мне нужен был инструмент. Острый, практичный, универсальный. Отвечающий всем моим требованиям и расширяемый по моему желанию.
Но простой и удобный. Тут надо отметить, что на основной работе я не разработчик, поэтому постоянной среды программирования на рабочем компе не имею и, когда это требуется, пишу на чем придется — bat, JScript, VBA в MSOffice (да, это Windows, корпоративные системы, тут нет bash и perl «из коробки»), макросы в разном ПО и т.д. Все это помогает решить текущую задачу, но уровень и возможности маленько не те, что хотелось бы иметь.
Короче, мне нужна интегрированная среда со встроенным языком программирования, в которой я мог разбирать и конвертировать файлы, лазить в базы данных, получать отчеты, вызывать веб-сервисы, плодить запросы в джире и т.д., и т.п.
Написал таки заметку, о которой думал 3 месяца. Надеюсь она поможет человекам улучшить их английский в части восприятия речи.
Статья описывает, как на уровне БД поменять название приложения
Я хотел бы рассказать о том, как создал проект по распознаванию рукописного ввода цифр с моделями, которые дообучаются на нарисованных пользователями цифрах. Используется две модели: простая нейронная сеть (FNN) на чистом numpy и сверточная сеть (CNN) на Tensorflow. Вы сможете узнать, как сделать практически с нуля следующее..
На днях, по мотивам очередной статьи, посвященной проблеме расизма в распознавании речи, я участвовала в большом споре о том, кто в этом виноват. Часть людей была уверена, что это заговор программистов. На самом деле, правда кроется в данных, которые ИИ использует для своего обучения. Я решила провести эксперимент, чтобы наглядно доказать это. Оказалось, что Роб Спир (Rob Speer) уже все сделал за меня.
Есть такой шаг в развитии языка, когда его компилятор написан на нем же.
Чтобы доказать крутость библиотеки trafaret я тоже решил сделать что-то такое же
рекурсивненькое, где надо идти глубже.
Напишем на трафарете парсер Json Schema, который на выходе вернет
готовый трафарет для проверки документов в соответствии с данным описанием.
То есть некий объект типа Trafaret, если ему скормить корректный документ json schema
на выходе вернет объект типа Trafaret, которому можно кормить документы
соответствующие описанию.