Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
В прошлой главе мы видели, как нейросети могут самостоятельно обучаться весам и смещениям с использованием алгоритма градиентного спуска. Однако в нашем объяснении имелся пробел: мы не обсуждали подсчёт градиента функции стоимости. А это приличный пробел! В этой главе я расскажу быстрый алгоритм для вычисления подобных градиентов, известный, как обратное распространение.
Мы рады сообщить, что расширение Python для Visual Studio Code от июня 2019 года уже доступно. Вы можете загрузить расширение Python из Marketplaceили установить его прямо из галереи расширений в Visual Studio Code. Если у вас уже установлено расширение Python, вы также можете получить последнее обновление, просто перезапустив Visual Studio Code. Узнать больше о поддержке Python в Visual Studio Code можно в документации.
В этом выпуске мы внесли улучшения, которые перечислены в нашем журнале изменений, решив в общей сложности 70 проблем, включая связанные со средством просмотра графиков с окном Python Interactive и параллельными тестами с pytest. Обо всех изменениях читайте под катом.
Этот высокоуровневый урок рассчитан на новичков в машинном обучении и искусственном интеллекте. Для того, чтобы успешно создать нейронную сеть, необходимо:
Представляю вашему вниманию перевод статьи Toward a “Kernel Python” автора Glyph Lefkowitz (создателя фреймворка Twisted).
Я использовал Python чаще, чем любой другой язык программирования в последние 4-5 лет. Python – преобладающий язык для билдов под Firefox, тестирования и инструмента CI. Mercurial также в основном написан на Python. Множество своих сторонних проектов я тоже писал на нем.
Во время своей работы я получил немного знаний о производительности Python и о его средствах оптимизации. В этой статье мне хотелось бы поделиться этими знаниями.
Некоторые вопросы в мире питонячей разработки имеют магическую силу поднимать целые армии людей, направлять их на священную войну и заставлять кидать друг в друга целыми кучами аргументов, выкладок и кусков кода. Иногда, когда доводы заканчиваются, враждующие армии быстро переходят к ведению боевых действий с помощью перекидывание кучек вербальных экскрементов.
Про тонкости, расширенные возможности, про цепочки подписей x.509, как можно организовать свои цепочки подписей. Ну и в общем, как устроить защищённое общение между своими/сторонними сервисами по стандартам RFC. Ну и конечно, как это все использовать на Python
Сталкивались ли вы с проблемой: как быть с разделяемыми данными для приложения с микросервисной архитектурой? Как держать их в консистентом состоянии? Как сделать так, чтобы API для работы с этими данными не тормозили? Расскажу, какой подход мы выбрали в рамках нашего продукта и почему