Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Мы автоматизируем показ рекламы в интернете. Наши системы принимают решения не только на основе исторических данных, но и активно используют информацию, полученную в реальном времени.
Думаю, статья будет интересна всем, кто пользуется Notion, но по какой-то причине не мог переехать на него полностью.
Я разрабатываю свой проект. На лэндинге после ввода емейла выдается ссылка на соцопрос на базе Google Forms. Ответы записываются в табличечку на Google Drive.
Проблема в том, что все свое я ношу с собой сохраняю в Notion. Это банально удобней. Обходился ручным копипастом, пока отзывов было мало. Потом их стало больше — и надо было что-то придумать. Кому интересно, что вышло — добро пожаловать под кат.
Перевод обзорной статьи: Guest Contributor Overview of Async IO in Python 3.7
В сообществе OpenDataScience успешно развивается инициатива ML4SG — Machine Learning for Social Good. В её рамках стартовал целый ряд интересных проектов, которые в самых разных областях улучшают нашу с вами жизнь.
Мы хотели бы рассказать об одном из таких проектов под кодовым названием #proj_shipwrecks.
В рамках проекта мы стремимся помогать людям, занимающимся разного рода морскими исследованиями, от морских археологов, биологов и океанологов до команд спасения на воде, используя как свою экспертизу в области компьютерного зрения, так и придумывая новые, порой неожиданные ходы.
Предлагаем вашему вниманию «выездной» выпуск Moscow Python Podcast, записанный на Knowledge Conference 2019. Учитывая тематику конференции, на сей раз мы сосредоточились не только на культуре кодинга и подходах к разработке, но и на том, как различные практики закрепляются (или не закрепляются) в Python-сообществе.
Автоматические системы модерации внедряются в веб-сервисы и приложения, где необходимо обрабатывать большое количество сообщений пользователей. Такие системы позволяют сократить издержки на ручную модерацию, ускорить её и обрабатывать все сообщения пользователей в real-time. В статье поговорим про построение автоматической системы модерации для обработки английского языка с использованием алгоритмов машинного обучения. Обсудим весь пайплайн работы от исследовательских задач и выбора ML алгоритмов до выкатки в продакшен. Посмотрим, где искать готовые датасеты и как собрать данные для задачи самостоятельно.
На производстве важно следить за качеством продукции, причем как приходящей от поставщиков, так и той, что мы выдаем на выходе. Для этого у нас часто проводятся пробоотборы — специально обученные сотрудники берут пробоотборники и по имеющейся инструкции собирают пробы, которые затем передают в лабораторию, где их и проверяют на качество.
QlikView и его младший брат QlikSense — замечательные BI инструменты, достаточно популярные у нас в стране и "за рубежом". Очень часто эти системы сохраняют "промежуточные" результаты своей работы — данные, которые визуализируют их "дашборды" — в так называемые "QVD файлы". Часто QVD файлы используются в качестве основного хранилища в многоэтапных ETL процессах, построенных на базе Qlik. И тогда у некоторых (у меня, например, — я занимаюсь в компании вопросами инженерии данных) возникает вопрос — можно ли и как воспользоваться этими данными без QlikView/QlikSense? Или другой — а что там и правильно ли "оно" посчиталось?