Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Аудио-подкаст
В этой статье мы хотим рассказать, как мы создали решение для классификации названий продуктов из чеков в приложении для учёта расходов по чекам и помощника по покупкам. Мы хотели дать пользователям возможность просматривать статистику по покупкам, собранную автоматически на основе отсканированных чеков, а именно распределить все купленные пользователем товары по категориям. Потому что заставлять пользователя самостоятельно группировать товары — это уже прошлый век. Есть несколько подходов для решения такой задачи: можно попробовать применить алгоритмы кластеризации с разными способами векторного представления слов или классические алгоритмы классификации. Ничего нового мы не изобрели и в этой статье лишь хотим поделиться небольшим гайдом о возможном решении задачи, примерами того, как делать не надо, анализом того, почему не сработали другие методы и с какими проблемами можно столкнуться в процессе.
PostgreSQL, пожалуй, это самая продвинутая реляционная база данных в мире Open Source Software. По своим функциональным возможностям она не уступает коммерческой БД Oracle и на голову выше собрата MySQL.
Если вы создаёте на Python веб-приложения, то вам приходиться работать с БД. В Python самой популярной библиотекой для работы с PostgreSQL является psycopg2. Эта библиотека написана на Си на основе libpq.
И хотя людей, которые для написания списка покупок или компиляции данных по квартплате используют скрипты на python, пересчитать по головам, но если так получилось, что вы используете скрипты для решения рутинных задач и иногда скрипты работают недопустимо долго, то возможно, идея применение ленивых вычислений ко всему что движется, придётся вам по вкусу.
О новом пакете, позволяющем настраивать глобальные клавиши на UNIX-подобных системах под X Window System.
Удивительно, на на хабре до сих пор нет поста о такой, весьма интересной, замене шеллу как xonsh (github), с моей точки зрения синтаксис всяких shell'ов ужасен и не вижу никаких оснований сохранять его в 21 веке, а Python, в свою очередь, обладает прекрасным синтаксисом и массой других преимуществ, поэтому, на мой взгляд, он и должен быть языком автоматизации по умолчанию, чего и пытаеся достичь xonsh.
Какое-то время использую xonsh, поэтому думаю, что могу рассказать о нём достаточно для того, чтобы начать пользоваться.
Применение аналитических алгоритмов на потоке данных сейчас одна из самых актуальных задач в области построения аналитических систем. Множество высокоточных предиктивных моделей, например, разработанных на показаниях с датчиков промышленных установок, уже готовы предупреждать серьезные аварии на производстве, но для этого их нужно выполнять на конечных устройствах («edge devices»), там, где показания с сенсоров поступают в реальном времени. Решить эту проблему и перенести аналитику в «онлайн» призван продукт SAS Event Stream Processing. В этой публикации хотелось поделится опытом его настройки на примере прикладной задачи – анализа изображений с видеокамер.