Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Продолжаем заставлять ботов бесконечно играть в карты в надежде вытрясти оптимальные настройки для нашей карточной игры. Итак, в предыдущих сериях мы: написали логику карточной игры на питоне; внедрили в игру ботов и заставили их играть друг с другом тысячи и тысячи партий; описали метрики, которые мы собираем с игры; пообещали себе, что доведем дело до конца и получим оптимальные настройки карточной игры
Если бы меня спросили, какой мой любимый векторный редактор, я бы, не задумываясь, ответил: PowerPoint. Это началось с желания делать презентации, которые приятно смотреть. Меня всегда огорчало, как часто даже в хороших докладах используются мыльные, шакальные картинки – особенно там, где вполне можно обойтись аккуратными векторными схемами.
Switch Django apps from uWSGI to NGINX Unit using JSON configuration, add SECURE_PROXY_SSL_HEADER, adjust socket proxy_pass, and enable ASGI/WSGI deployments.
Два распространенных алгоритма могут ускользать от понимания. В чем отличие разбиения в быстрой сортировке и похожих «магических» движений в сортировке слиянием? Меня это долго сбивало с толку. Разберемся же с ними наконец!
В данной статье продолжаю материал прошлой и хочу углубиться в тему декораторов, показать относительно сложные, но применимые в реальной практике примеры использования декораторов, дам небольшую теоретическую базу и некоторое количество ссылок на полезные материалы по теме. Думаю, последние разделы статьи будут полезны даже для опытных разработчиков. Как обычно буду очень рад критике и предложениям по улучшению материала.
В этой статьей расскажу, как я моделировал работу гидроциклонов для очистки воды от нефти на реальном промышленном объекте. Объясню, почему выбрал машинное обучение (ML) вместо физико-математических моделей, опишу ключевые этапы работы, ошибки, важные выводы и итоговые результаты.
В нашей школе мы столкнулись с необходимостью автоматизации установки ПО на компьютеры. Я расскажу, для чего оно нам понадобилось, как я воевал с Windows во время разработки и к чему пришел в конечном итоге.
В начале апреля я запустил llm7.io - полностью бесплатный LLM-провайдер, совместимый с популярными библиотеками chat completion. Цель была простая: проверить, насколько эффективно можно построить отказоустойчивую архитектуру под настоящую high-load-нагрузку, и при этом дать всем желающим доступ к мощным языковым моделям - без регистрации, API-токенов, смс и прочих барьеров. Что произошло за месяц?
После серии статей про svg-виджеты в tcl/tk, меня не оставляло чувство какой-то незавершенности. Всматриваясь в проект svgwidgets, стало понятно, что не хватает утилиты с удобным интерфейсом для генерации градиентной заливки.
Модуль для работы с многомерными массивами. Скачать можно по ссылке: https://pypi.python.org/pypi/numpy/
Необходимо было разработать API сервис (не важно на каком ЯП), который мог принимать в себя .pdf документ, выполнять какую-то процедуру по извлечению из него необходимых данных, возвращать их в каком-то формате. Конкретнее: есть сертификат экспорта авто из Японии в РФ. На этом сертификате есть параметр "Номер кузова авто". Необходимо его извлечь из документа, прочитать с помощью машинного зрения, проверить данное значение по базе данных организации. В случае успешной операции - положить файл на ftp сервер, переименовав его в идентификатор записи с БД.
Лесные пожары – явление столь же древнее, сколь и сама жизнь на суше. Величественные и одновременно ужасающие, они способны за считанные часы превратить гектары зеленого массива в выжженную пустыню, неся угрозу экосистемам, человеческим поселениям и климату планеты. Ежегодно новости пестрят сообщениями о новых очагах возгорания, о борьбе стихии и человека. Но что если мы попытаемся заглянуть в самое сердце этого хаотичного, на первый взгляд, процесса? Что если мы сможем не просто наблюдать, а моделировать, предсказывать и даже экспериментировать с распространением огня, не выходя из-за своего компьютера?
A recap of the first year of work on enabling support for the free-threaded build of CPython in community packages.
Я хотел бы начать ее с такого интересного эксперимента как "сбор гибрида для обучения нейронных сетей с помощью генетического алгоритма" и дополнительно рассказать про библиотеку Deap.