Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Каждый, кто открывает свой бизнес, хочет угадать идеальный момент открытия, найти идеальное место и выполнить точные, эффективные действия для того, чтобы бизнес выжил и приумножился. Найти идеальные параметры невозможно, но оценить наилучшие возможности помогают инструменты статистического анализа.
В открытых источниках содержится огромное количество полезной информации. Правильный ее сбор, хранение и анализ помогут найти оптимальные возможности для бизнеса.
В прошлой статье была рассмотрена общая годовая сумма строительных объемов (инвестиций) в Сан-Франциско в период с 1980 по 2018 год. По разнице между ожидаемой (сметной) и фактической (пересмотренной) стоимостью строительства отслеживались движения настроений инвесторов в периоды экономических бумов и кризисов в регионе.
Похоже, не один наш дайджест не обходится без упоминания разработок Open AI: в июле самой обсуждаемой темой в области машинного обучения стал новый алгоритм GPT-3. Технически это не одна модель, а целое семейство, которое для удобства обобщают под единым названием. В самой крупной модели используется 175 млрд параметров, а для обучения использовался датасет размером 570 Gb, в который вошли отфильтрованные данные из архивов Common Crawl и высококачественные данные WebText2, Books1, Books2 и Wikipedia.
Тот, кто научился летать, ползать уже не будет. Но не должно быть и высокомерия к тому, кто «летать не может» в принципе. И то и другое вполне норма. И то и другое уважаемо и почетно. Для человека — это, как выбор профессии: вы, условно, либо летчик, либо шофер. Для тех же животных аналогично — вы либо орел, либо волк, т.е. либо летаете, либо бегаете (убегаете). Но только человек в своих понятиях, категориях, отношении и мыслях наделил персонажи характеристиками и выработал свое отношение к ним. Правда, с нюансами. Так, нет, наверное, почетнее и романтичнее профессии летчика, но попробуйте в этом убедить дальнобойщика или авиаконструктора?! И тут сложно возразить: космонавтов много даже сейчас, а второго Королева все еще нет!
Этот текст предназначен для начинающих тестировщиков, желающих понять как делать отчеты на allure с историей тестов, также разъяснить где их хранить, чтобы в отчет мог заглянуть любой участник вашей команды.
В этой статье June Tao Ching рассказал, как с помощью Pandas добиться на Python такого же результата, как в SQL-запросах. Перед вами — перевод, а оригинал вы можете найти в блоге towardsdatascience.com.
В предыдущей статье в рамках коммерческого проекта по анализу рынка фотостудий рассмотрел создание парсинга: выгрузка списка фотостудий, списка залов, данных по бронированию с момента открытия зала до последней брони.
Django — один из самых популярных веб фреймворков Python, используемый многими организациями. Поскольку он использует встроенное средство ведения логов Python logging, использование логов в Django совсем несложная задача.
В последние несколько лет ключевое слово async и семантика асинхронного программирования проникла во многие популярные языки программирования: JavaScript, Rust, C#, и многие другие. Конечно, в Python тоже есть async/await, они появились в Python 3.5. В этой статье хочу обсудить проблемы асинхронного кода, порассуждать об альтернативах и предложить новый подход поддерживать и синхронные, и асинхронные приложения одновременно.
A newbie friendly introduction to Pandas with real life examples.
Мне приходится собирать статистику из Яндекс Директ и, чтобы упростить работу, я опубликовал свой python-пакет, с помощью которого это можно делать очень просто.
Меня зовут Никита Башун, работаю дата-аналитиком в группе компаний «Везёт». Мой рассказ будет о том, как мы командой из трёх человек с нуля создавали систему антифрода для сервиса заказа поездок.