Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Подробный мануал
Как, опять? Ещё один туториал, пережёвывающий официальную документацию от Telegram, подумали вы? Да, но нет! Это скорее рассуждения на тему того, как построить функциональный бот-сервис используя Python3.5+, asyncio и aiohttp. Тем интереснее, что заголовок на самом деле лукавит…
На Хабре уже полно статей-туториалов с заголовками «Создание бота на Python», но многие из них используют готовые обертки над HTTP-интерфейсом Bot API Телеграма. Я же использую стандартную библиотеку для отправки и получения GET- и POST-запросов — requests. И так, рассмотрим создание примитивного Телеграм бота, который будет отвечать на все наши текстовые сообщения. Это будет заготовка для дальнейшего расширения.
Статья описывает, как можно поучавствовать в улучшении Django. Описано очень подробно
Гайд описавает, как добавить поддержку Python3 в библиотеку.
Я люблю Python. Нет, правда, это отличный язык, подходящий для широкого круга задач: тут вам и работа с операционной системой, и веб-фреймворки на любой вкус, и библиотеки для научных вычислений и анализа данных. Но, помимо Python, мне нравится функциональное программирование. И питон в этом плане неплох: есть замыкания, анонимные функции и вообще, функции здесь — объекты первого класса. Казалось бы, чего ещё можно желать? И тут я случайно наткнулся на Coconut — функциональный язык, компилируемый в Python. Всех любителей Python и ФП прошу под кат.
Python DB-API – это не конкретная библиотека, а набор правил, которым подчиняются отдельные модули, реализующие работу с конкретными базами данных. Отдельные нюансы реализации для разных баз могут отличаться, но общие принципы позволяют использовать один и тот же подход при работе с разными базами данных.
Как можно использовать Dask для паралелльного вычисления в TensorFlow
Под катом пойдёт речь о реализации свёрточной нейронной сети архитектуры InceptionV3 с использованием фреймворка Keras. Статью я решил написать после ознакомления с туториалом "Построение мощных моделей классификации с использованием небольшого количества данных". С одобрения автора туториала я немного изменил содержание своей статьи. В отличие от предложенной автором нейронной сети VGG16, мы будем обучать гугловскую глубокую нейронную сеть Inception V3, которая уже предустановлена в Keras.
Интересный способ применения OpenCV - для распознавания чисел/цифр
Хорошие слайды про регулярные выражения.
Статья рассказывает о структуре Namedtuple, для чего она и как ее использовать