Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Предлагаем вашему вниманию подборку материалов от python.org о том, с чего начать первые шаги в программировании. Если Вы никогда не занимались программированием раньше, эти материалы для вас. Данные туториалы не предполагают, что у вас есть какой-то опыт. (Если у вас уже есть опыт программирования, посетите Beginners Guide).
Оригинальная статья: Rocio Aramberri – Optimizing Django ORM Queries
Django ORM (Object Relational Mapping) – одна из самых мощных функций Django. Благодаря ей мы можем взаимодействовать с базой данных, используя код Python вместо SQL.
В этой статье я расскажу о шести инструментах, способных значительно ускорить ваш pandas код. Инструменты я собрал по одному принципу — простота интеграции в существующую кодовую базу. Для большинства инструментов вам достаточно установить модуль и добавить пару строк кода.
В этой простыне все примеры разобраны от совсем простых к более сложным, так что разработчикам с опытом будет скучно. Так же эта «шпаргалка» не заменит на 100% примеры из документации.
При обработке естественного языка требуется предварительная подготовка документов, и одним из способов является лемматизация – приведение всех слов текста к их нормальным формам с учетом контекста.
Недавно мы столкнулись с проблемой больших временных затрат на этот процесс. В конкретной задаче было более 100000 документов, средняя длина которых около 1000 символов, и требовалось реализовать обработку на обычном локальном компьютере, а не на нашем сервере для вычислений. Решение на просторах интернета мы найти не смогли, но нашли его сами, и я хотел бы поделиться — продемонстрировать сравнительный анализ двух наиболее популярных библиотек по лемматизации в этой статье.
В данной статье я расскажу и покажу на примере, о том, как человек с минимальным Data Science опытом, смог собрать данные из форума и сделать тематическое моделирование постов с использованием LDA модели, и выявил наболевшие темы людей с глютеновой непереносимостью.
Сегодня появляется все больше 3D датасетов и задач, связанных с 3D данными. Это связано с развитием робототехники и машинного зрения, технологий виртуальной и дополненной реальности, технологий медицинского и промышленного сканирования. Алгоритмы машинного обучения помогают решать сложные задачи, в которых необходимо классифицировать трехмерные объекты, восстанавливать недостающую информацию о таких объектах, или же порождать новые. Несмотря на достигнутые успехи, в области 3D ML остаются нерешенными еще очень много задач, и эта серия заметок призвана популяризировать направление среди русскоязычного сообщества.
Если в вашем приложении есть какой-то длительный процесс, вы можете обрабатывать его не в стандартном потоке запросов/ответов, а в фоновом режиме.
Сегодня мы поговорим о процессе настройки и конфигурирования Celery и Redis для обработки длительных процессов в приложении на Django, чтобы решать такие задачи. Также мы воспользуемся Docker и Docker Compose, чтобы связать все части вместе, и рассмотрим, как тестировать задания Celery с помощью модульных и интеграционных тестов.
Какие технические знания становятся наиболее популярными у работодателей, а какие теряют свою популярность.
Для начала пару слов, о том что такое в целом хуки (hooks) и для чего они могут быть нужны. Git «из коробки» предоставляет инструмент, который умеет запускать ваши скрипты при наступлении какого либо события (к примеру пуш на сервер и т.п.)
.pre-commit это удобная надстройка над дефолтным git pre-commit hook, которая запускает скрипты описанные в .pre-commit-config.yaml перед созданием коммита. В теории звучит просто, перейдем к практике.
Дизайн: высокопроизводительные колоночные данные в Python.
C++ библиотеки Apache Arrow и Parquet являются вспомогательными технологиями, которые изначально проектировались нами для согласованной совместной работы.
Одной из основных целей Apache Arrow является создание эффективного межоперационного уровня транспортировки колоночной памяти.
Хочу рассказать, как я решал проблему эффективного конкурентного исполнения asyncio задач в Celery.
Вообще же, про data driven легко говорить и кайфово это реализовывать в компаниях, в которых большинство сотрудников являются power users, то есть легко напишут запрос к базе, не отрываясь от заваривания чая, а в голове у них есть вопросы и задачи, которые можно решить только при наличии технологии Big Data.
Задача — создать пример авторизации пользователя с использованием фреймворков Starlette (https://www.starlette.io/) и Vue.js *, который был бы максимально комфортным разработчикам Django для «миграции» в асинхронный стек.
Почему Starlette? В первую очередь скорость. Starlette ультимативно быстр, и в тестах уступает только BlackSheep (https://pypi.org/project/blacksheep/). Во вторых Starlette весьма прост и писать на нем в силу его продуманности легко и приятно.
В качестве ORM мы будем использовать Tortoise ORM (со моделями и выборками «аля Django ORM»). В качестве сессионного механизма мы будем использовать JWT.
Сегодня хочу рассказать вам про задачу визуализации пересекающихся множеств и про пакет для Python с открытым кодом, созданный мной для её решения. В процессе мы узнаем, чем различаются диаграммы Венна и Эйлера, познакомимся с сервисом распределения заказов и по касательной заденем такую область науки, как биоинформатика. Двигаться будем от простого к более сложному. Поехали!
И вынести тестируемые результаты вне кода. Это статья об автоматизации и увеличения удобства тестирования на Python.
У меня был проект, который разрабатывался уже несколько лет. В проекте отсутствовали тесты. А также у него были активные зависимости от других команд, которые также влияли на результат.
Регрессионное тестирование было одним из шагов для более уверенной разработки. Его суть в сравнении вычисленных данных с последним канонизированным результатом работы программы.
Результаты выполнения можно проверять в python коде тестов. Это близко к контексту выполнения и зачастую удобно.
Сторителлинг – один из важнейших навыков для специалистов, которые занимаются анализом данных. Чтобы доносить идеи и делать это убедительно, нужно простраивать эффективную коммуникацию. В этой статье мы познакомимся с 5 методами визуализации, которые выходят за рамки классического понимания, и могут сделать вашу Data Story более эстетичной и красивой. Работать мы будем с графической библиотекой Plotly на Python (она также доступна на R), которая позволяет создавать анимированные и интерактивные диаграммы с минимальными усилиями.
В этой статье я покажу вам, как применять эффекты OpenGL к своим кастомным карточкам, если вы используете в своих приложениях такие кроссплатформенные инструменты как фреймворк Kivy и библиотеку материального дизайна для этого фреймворка — KivyMD. Погнали!
Мы в компании создаем сервис, который позволяет автоматически создавать, управлять и безопасно хранить лицензионные соглашения и прочие договоры между фрилансерами и их клиентами.
Для решения это задачи я опробовал десятки решений в области обработки естественного языка, в том числе решения с открытым кодом и хотел бы поделиться опытом работы с open source Python — библиотеками для распознавания именованных сущностей.