Собрали в одном месте самые важные ссылки
читайте нас в Telegram
В настоящее время весьма актуальной темой остается возможность налогового органа исключить из ЕГРЮЛ общество всего лишь ”выявив” в отношении компании так называемые недостоверные сведения. Как показывает статистика с сентября 2018 года ФНС исключила из ЕГРЮЛ 90 тысяч организаций с записью о недостоверности сведений о руководителе, учредителе или адресе юрлица. Обнаружить тот факт, что в отношении компании имеются недостоверные сведения можно лишь просмотрев выписку из ЕГРЮЛ.
При проведении CWT анализа средствами библиотеки PyWavelets (бесплатное программное обеспечение с открытым исходным кодом, выпущенное по лицензии MIT) возникают проблемы с визуализацией результата
В первой статье о структуре QVD файла я описал общую структуру и достаточно подробно остановился на метаданных. В этой статье я опишу формат хранения информации о колонках, поделюсь своим опытом трактовки этих данных.
Итак (вспоминаем) QVD файл соответствует реляционной таблице, которая, как известно состоит из строк. Каждая строка таблицы в свою очередь состоит из колонок (или полей), причем строки имеют одинаковую структуру, которая может быть описана, например, SQL оператором (create table).
Управление зависимостями? Шо, опять?
Экосистема Python породила целую пачку способов управления зависимостями в проектах.
Прямо сейчас можно выбирать между setup.py, requirements.txt, setup.cfg, MANIFEST.in и Pipfile.
Но французского питониста Sébastien Eustace все эти способы не устроили, и он написал свою штуку для менеджмента питонячих пакетов — Poetry. Зачем он это сделал? Чтобы заменить все эти setup.py, requirements.txt, setup.cfg, MANIFEST.in и Pipfile чем-то простым и понятным. Плюс добавить кое-что полезное сверху.
Несколько дней назад команда Windows анонсировала майское обновление 2019 для Windows 10. В этом посте мы взглянем на то, что мы, команда Python, сделали для того, чтобы установка Python в Windows стала проще. В частности поговорим о Microsoft Store и о добавлении дефолтной команды “python.exe” для облегчения поиска (в коллаборации с Windows). Возможно вы уже слышали об этом в подкасте Python Bytes, на PyCon US, или в Twitter.
В конце прошлого месяца Microsoft рассказала, что в майском обновлении Windows 10 появилась возможность более удобной (для новичков, по всей видимости) установки Python через встроенный магазин приложений Microsoft Store. Теперь, если набрать python в консоли, когда он ещё не установлен, то установка из магазина будет предложена автоматически. Сейчас в магазине Python 3.7.
В то же время Apple, в заметках к XCode 11 указывает, что в следующих версиях macOS интерпретатора Python уже не будет. Там же сказано, что использование Python 2.7, который ранее включался в поставку для совместимости со старым программным обеспечением, не рекомендуется. А рекомендуется вместо этого поставить и использовать отдельно Python 3.
К «Питону» приходят по-разному: кто-то увлекается ИИ, кто-то начинает изучать веб-разработку на «Питоне» взамен уже надоевшего PHP; у меня получилось по-другому – я стал замечать, что этот язык используется довольно часто в современном программировании не только среди энтузиастов, но и в среде крупных компаний. В общем, язык набирает популярность в массах, поэтому я решил к нему «присмотреться», ну, то есть, изучить.
Изучение нового алгоритмического языка, не сказать, что процесс уж очень увлекательный, если ты уже знаком с несколькими… Можно выбрать книгу, можно какой-нибудь онлайн-курс, а можно вообще «ролики-мультики» и … «сиди-читай-изучай». — Скука!
Набрёл я в Сети на самоучитель по «Питону», в принципе, неплохой, но не сказать, что претендующий на полноту изложения синтаксиса и наткнулся там на «Примеры программ». Среди нескольких других, был там один очень любопытный пример, который буквально «повернул время вспять», и я оказался в тех временах, когда «деревья были больше, а трава зеленее»…
Реализация объектно-ориентированного программирования (ООП) в языках Java и Python отличается. Принцип работы с объектами, типами переменных и прочими языковыми возможностями может вызвать затруднение при переходе с одного языка на другой. В данной статье, которая может быть полезной как для Java-программистов, желающих освоить Python, так и для Python-программистов, имеющих цель лучше узнать Java, приводятся основные сходства и отличия этих языков, применительно к ООП.
На сайте ФНС по адресу egrul.nalog.ru/index.html есть замечательный сервис проверки контрагентов или своих собственных обществ.
Суть проверки сводится к подаче запроса в ЕГРЮЛ (единый реестр фактов детальности юридических лиц) и получении тут же, онлайн, выписки из реестра.
Работа с сервисом не вызывает каких-либо затруднений: внес в поле ОГРН, нажал кнопку “Найти” и нажал кнопку “Скачать” ниже. Все, выписка получена.
Как здесь может помочь автоматизация? Очень просто.
Это небольшое руководство предназначено для пользователя Django, который хочет настроить приложение Django c веб-сервером в производственной среде.
Мы автоматизируем показ рекламы в интернете. Наши системы принимают решения не только на основе исторических данных, но и активно используют информацию, полученную в реальном времени.
Думаю, статья будет интересна всем, кто пользуется Notion, но по какой-то причине не мог переехать на него полностью.
Я разрабатываю свой проект. На лэндинге после ввода емейла выдается ссылка на соцопрос на базе Google Forms. Ответы записываются в табличечку на Google Drive.
Проблема в том, что все свое я ношу с собой сохраняю в Notion. Это банально удобней. Обходился ручным копипастом, пока отзывов было мало. Потом их стало больше — и надо было что-то придумать. Кому интересно, что вышло — добро пожаловать под кат.
Перевод обзорной статьи: Guest Contributor Overview of Async IO in Python 3.7
В сообществе OpenDataScience успешно развивается инициатива ML4SG — Machine Learning for Social Good. В её рамках стартовал целый ряд интересных проектов, которые в самых разных областях улучшают нашу с вами жизнь.
Мы хотели бы рассказать об одном из таких проектов под кодовым названием #proj_shipwrecks.
В рамках проекта мы стремимся помогать людям, занимающимся разного рода морскими исследованиями, от морских археологов, биологов и океанологов до команд спасения на воде, используя как свою экспертизу в области компьютерного зрения, так и придумывая новые, порой неожиданные ходы.
Автоматические системы модерации внедряются в веб-сервисы и приложения, где необходимо обрабатывать большое количество сообщений пользователей. Такие системы позволяют сократить издержки на ручную модерацию, ускорить её и обрабатывать все сообщения пользователей в real-time. В статье поговорим про построение автоматической системы модерации для обработки английского языка с использованием алгоритмов машинного обучения. Обсудим весь пайплайн работы от исследовательских задач и выбора ML алгоритмов до выкатки в продакшен. Посмотрим, где искать готовые датасеты и как собрать данные для задачи самостоятельно.
На производстве важно следить за качеством продукции, причем как приходящей от поставщиков, так и той, что мы выдаем на выходе. Для этого у нас часто проводятся пробоотборы — специально обученные сотрудники берут пробоотборники и по имеющейся инструкции собирают пробы, которые затем передают в лабораторию, где их и проверяют на качество.
QlikView и его младший брат QlikSense — замечательные BI инструменты, достаточно популярные у нас в стране и "за рубежом". Очень часто эти системы сохраняют "промежуточные" результаты своей работы — данные, которые визуализируют их "дашборды" — в так называемые "QVD файлы". Часто QVD файлы используются в качестве основного хранилища в многоэтапных ETL процессах, построенных на базе Qlik. И тогда у некоторых (у меня, например, — я занимаюсь в компании вопросами инженерии данных) возникает вопрос — можно ли и как воспользоваться этими данными без QlikView/QlikSense? Или другой — а что там и правильно ли "оно" посчиталось?
Сегодня мы обсудим, зачем кому-то понадобилось писать замену стандартному питонячему логеру logging и как этой штукой пользоваться.