Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Как то раз была у меня «работа» — нужно было сделать управление кассовым аппаратом Штрих-ФР-К. Так как моя карьера начиналась с ремонта ККТ, торешил взяться за эту работу.
За полным списком новых полезных инструментов, статей и докладов можно обратиться в мой телеграм канал @OpensourceFindings (по ссылке зеркало, если не открывается оригинал).
В сегодняшнем выпуске.
Технологии внутри: Python, Rust, JavaScript, Go.
Тематика: веб разработка, администрирование, инструменты разработчика.
Решил поделиться, да бы и самому не забывать, как можно использовать простые статистические инструменты для анализа данных. В качестве примера использовался анонимный опрос относительно зарплат, стажа и позиций украинских программистов за 2014 и 2019 год. (1)
Перевод статьи "TensorFlow Tutorial: 10 minutes Practical TensorFlow lesson for quick learners" автора Ankit Sachan.
Этот туториал по TensorFlow предназначен для тех, кто имеет общее представление о машинном обучении и пытается начать работу с TensorFlow.
Прежде всего у вас должен быть установлен TensorFlow. Вы можете его установить по этому руководству. Этот урок разделен на две части: в первой части мы объясняем основы на рабочем примере, во второй части мы строим модель линейной регрессии.
Однажды в одном из проектов в мои руки попал фискальный принтер. Мы каждый день сталкиваемся с этими устройствами, когда совершаем платежи в магазинах, но мало кто догадывается что на самом деле они из себя представляют. Не буду вдаваться в подробности их работы, просто скажу, что это такие штучки, которые печатают чеки с данными о покупке на специальной термобумаге (да-да, почти во всех фискальных принтерах нет чернил!).
Я должен был разобраться как получить состояние функционирования фискального принтера и его внутренние параметры настройки. Задача давно выполнена, а фискальный принтер был надолго заброшен в дальний угол… Пока в мою голову не пришла идея немного покреативить :D
Сегодня я хотел бы поговорить о распаковке вложенных списков неопределённой глубины. Это достаточно нетривиальное занятие, поэтому я бы хотел рассказать тут о том, какие реализации есть, их плюсы и минусы и сравнение их производительности.
Однажды, исследуя глубины интернета, я наткнулся на видео, где человек обучает змейку с помощью генетического алгоритма. И мне захотелось так же. Но просто взять все то же самое и написать на python было бы не интересно. И я решил использовать более современный подход для обучения агентных систем, а именно Q-network. Но начнем с начала.
Предположим, ваша Python-программа оказалась медленной, и вы выяснили, что это лишь отчасти обусловлено нехваткой процессорных ресурсов. Как выяснить то, какие части кода вынуждены ожидать чего-то такого, что не относится к CPU?
«Консультант+» — справочная система для юристов, бухгалтеров и так далее. Работает стабильно, как часы. В этом посте предлагается немного эти часы настроить под свои нужды в части выдачи текста, а именно: взглянуть как можно переработать с помощью python текстовую информацию, которую выдает система. Попутно поработать с элементами текста, заявленными в заголовке.
Сегодня попробуем обучить свою собственную нейронную сеть, чтобы писала текст для песен. Обучающей выборкой будут тексты группы "Руки Вверх". Ничто не мешает чтобы поменять данные на тексты своих любимых групп. Для извлечения данных с веб-сайтов используем Python3 (модуль BeautifulSoup).
Представим, что для аутентифицированного пользователя при открытии страниц постоянно выполняются какие-то запросы, например подгружается дополнительно список уведомлений, а также его профиль. И эту информацию мы используем в шаблонах, например таким образом.
В данной статье описывается процесс синтаксического анализа предложения русского языка с использованием контекстно-свободной грамматики и алгоритма LR-анализа.
Обработка естественного языка — общее направление искусственного интеллекта и математической лингвистики. Оно изучает проблемы компьютерного анализа и синтеза естественных языков.
Изначально я хотел для себя написать простенького телеграмм бота счетчика калорий, который получает число от пользователя и возвращает сколько калорий осталось до нормы на день. То есть нужно хранить грубо говоря пару переменных для каждого пользователя.
Сегодня мы продолжаем цикл статей, посвященный скорингу и использованию в оном теории графов. С первой статьей Вы можете ознакомиться здесь.
Все шуточные аллегории, вставки и прочее призваны немного разгрузить повествование и не позволить ему свалиться в нудную лекцию. Всем, кому не зайдет наш юмор, заранее приносим извинения
Цель данной статьи: не более, чем за 30 минут, описать основные способы хранения данных о графах и описать правила и принципы построения нашей модели для скоринга заемщика.
К сожалению, планшеты пока не заменяют компьютеры. Но покодить в поездке/полете это же жизненно необходимо. Поэтому я поискал какие ide есть под ipad, и собственно сегодня буду делать игрульку на Pythonista.
Автор материала, перевод которого мы сегодня публикуем, говорит, что современные люди, жизнь которых переполнена работой, часто забывают писать сообщения своим родным и близким. Он, глядя на то, как его родители каждое утро шлют ему в WhatsApp вдохновляющие цитаты и полезные советы о здоровье, решил, что пришло время ответить им взаимностью.
В этом руководстве мы напишем простой Python-скрипт, предназначенный для отправки WhatsApp-сообщений. В ходе работы будем пользоваться Python-пакетом Twilio. Для организации ежедневного запуска скрипта в заданное время разместим код в облаке.
Если вы читаете эту статью, вероятно, вы уже знакомы с возможностями, которые открываются при использовании API (Application Programming Interface).
Добавив в свое приложение один из многих открытых API, вы можете расширить функциональность этого приложения либо же дополнить его нужными данными. Но что, если вы разработали уникальную функцию, которой хотите поделиться с коммьюнити?