Собрали в одном месте самые важные ссылки
читайте нас в Telegram
В этой статье я хочу поговорить про временные ряды, а если конкретнее, про использование нейросетей для их прогнозирования.
По своей сути обслуживание моделей заключается в том, чтобы сделать обученные модели машинного обучения доступными для пользователей и систем надежным и масштабируемым способом. Это критический шаг в жизненном цикле машинного обучения.
Библиотека pandas 2.0 вышла в начале апреля, в ней появилось много улучшений нового режима Copy‑on‑Write (CoW, копирование при записи). Ожидается, что в pandas 3.0 режим CoW будет использоваться по умолчанию. Сейчас полный переход на копирование при записи запланирован на апрель 2024 года. У разработчиков библиотеки нет планов поддержки некоего «режима совместимости» или режима, в котором CoW не применяется.
Во второй части сфокусируемся на разработке бизнес-логики бота. В нашем проекте, для взаимодействия с Telegram, будем использовать библиотеку Aiogram.
А теперь о том, что происходило в последнее время на других ресурсах.
В этой статье я рассказываю, как настроить уведомления в вашем приложении на Python или в Alertmanager таким образом, чтобы сообщения приходили в определенный Telegram топик.
В этой статье я опишу одно из последних своих дерзновений в сфере оптимизации производительности с помощью Rust. Надеюсь, что в ней вы откроете для себя какие-то новые приёмы для написания быстрого кода на Rust.
Сегодня мы хотели бы продолжить тему обработки пространственных данных средствами Python библиотеки estaty. Мы уже рассказывали о том как можно Объединять открытые данные Open Street Map и Landsat для уточнения площадей зеленых зон вокруг объектов недвижимости. Теперь же поговорим о более сложном анализе
В этой статье мы узнаем шесть основных сценариев использования Celery. Разберем основные методы и аргументы, которые точно пригодятся. От асинхронной обработки задач до управления временем выполнения и обработки ошибок - вы получите цельное представление о том, как Celery может решать ваши задачи.
Добро пожаловать во вторую часть нашей серии статей "Работа с временными рядами в Python." В первой части, мы ознакомились с основами работы с временными рядами и научились анализировать и визуализировать их. Теперь мы переходим к более продвинутым аспектам этой увлекательной темы.
В этой статье я выскажу свою точку зрения о том, что из себя представляют категориальные признаки.
Современные облачные инструменты и пакеты Python стали настолько мощными, что с их помощью можно создать (масштабируемый) облачный API менее чем в 200 строках кода. В этом посте будет рассмотрено, как при помощи lines Google Cloud, Terraform и FastAPI развернуть в облаке полноценный API, через который можно отвечать на запросы.
На пути инженера данных часто встречаются задачи связанные с DevOps. Одна из таких - развернуть Airflow в Kubernetes кластере. Если до этого похожего опыта работы не было, то эта задача может показаться не тривиальной. Конечно, можно выполнить несколько команд из официального гайда, но если нужно будет что-то поправить, то без понимания, что происходит внутри, обойтись будет сложно. Эта статья призвана облегчить данную задачу. Она поможет тем, кто уже работал с Airflow, но еще не касался технологии Kubernetes
Аналитика данных стала неотъемлемой частью современного бизнеса и научных исследований. И одним из ключевых аспектов анализа данных являются временные ряды. Эффективная работа с временными рядами играет критическую роль в прогнозировании, стратегическом планировании и принятии решений в различных отраслях.
В этой статье, используя технику Retrieval-Augmented Generation ("Поисковая расширенная генерация"), мы настроим русскоязычного бота, который будет отвечать на вопросы потенциальных работников для выдуманного свечного завода в городе Градск.
Сегодня расскажем, как заняли 2 место в общем зачете AI Generative Product Hackathon, инициированного Napoleon IT, и 1 место в кейсе по анализу рекламных креативов для крупной российской фармацевтической компании.
Я проанализировал 600 публичных мок-интервью с YouTube и собрал из них 10 000 уникальных вопросов. Затем посчитал, как часто они встречаются, и определил вероятность появления каждого вопроса. У меня есть данные по 20 профессиям, включая frontend, python, java-разработчика, специалиста по тестированию и многих других.
GIL, или Global Interpreter Lock десятилетиями оставался темой обсуждения и дебатов среди питонистов.
А теперь о том, что происходило в последнее время на других ресурсах.