Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Одна из типовых задач аналитика — посчитать что-то на pySpark, а потом выгрузить это. Например: маленькую табличку в экселе, чтобы сделать отчёт или презентацию; большую таблицу в экселе или csv, чтобы отправить коллегам — до нескольких Гб; большой датасет для обучения ML-модели — до 100 Гб.
Мы продолжаем наше путешествие в мир алгоритмов поиска оптимального пути.В прошлой работе мы уже узнали, как можно найти оптимальный путь в графе в несколько сотен вершин. В данной работе хочу более подробно остановится на сути метода, а также разобрать возможность по его ускорению на графах от тысячи элементов.
В этой заметке попробуем сравнить следующие AI плагины VSCode
В этой статье разберём, что такое метрики отношения. Узнаем, почему критерий Стьюдента не работает. Попробуем применить бутстреп к зависимым данным. Изучим дельта-метод — способ оценки А/Б тестов с метрикой отношения.
Сегодня мы немного расскажем вам о работе IT-поддержки: что мы делаем и зачем, как используем Python и как именно он нам помогает решать рутинные проблемы и не только.Опытным коллегам, пишущим на Python, мы не раскроем каких-то сакральных тайн с точки зрения кода, а вот аналитикам, возможно, поможем усовершенствовать процессы.
Предлагаю, продолжить разговор на тему «Что делать с детьми летом, если ты айтишник». Сегодня, как договаривались — про hard.Родной российский чиновник не перестает нас умилять: дескать нужны стране IT-шники. А электронщики — те вообще нужны! Прямо позарез!
Интеллектуальные системы призваны облегчать жизнь человека, выполняя за него рутинные задачи. Одной из таких задач является поиск информации в большом количестве текста. Возможно ли и эту задачу перенести на плечи интеллектуальных систем? Этим вопросом я решил задаться.
Данная статья представляет собой руководство по Poetry. Я постарался покрыть все основные сценарии использования и возможности данного инструмента: создание проекта, работа с зависимостями из различных источников, управление виртуальными окружениями, сборка и публикация.
В этой статье речь пойдет об эксперименте Voyager: An Open-Ended Embodied Agent with Large Language Models, в котором группа исследователей (Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, Anima Anandkumar ) дала GPT-4 поиграть в Minecraft.
При работе с большими коллекциями в MongoDB, размер которых превышал десятки миллионов записей, возникла необходимость формировать случайные выборки уникальных значений полей, принадлежащих документам этой коллекции.Для такой операции, в MongoDB штатно предусмотрена функция $sample, которую можно использовать в составе pipeline при проведении агрегации данных. Однако, как показала практика, выполнение выборки полей таким образом на большой коллекции может занимать весьма ощутимое время. Чтобы сократить время выполнения таких выборок, потребовалось разработать собственный алгоритм, который на порядки увеличил скорость работы. Ниже приведен подход и вариант реализации данного алгоритма.
В последнее время все большей популярностью пользуются различные чаты на основе ChatGPT. Они доступны не только в формате веб-версий или telegram-ботов, но и в виде отдельных приложений для разных платформ. В один прекрасный день я наткнулся на новое приложение под названием Bavarder, но интерфейс показался мне не очень удобным и наглядным, и я решил создать на основе этого приложения своё.
Как известно, для успешной работы системы детекции и классификации (СДК) с применением технологии компьютерного зрения необходим большой объем данных, в том числе разметка объектов на изображении. Такая предварительная подготовка трудоемка и длительна. До сих пор работа по разметке объектов для создания обучающей выборки проводится в ручном режиме, хотя уже применяется и определенная автоматизация. Один из возможных вариантов такой автоматизации и был рассмотрен в работе.
В этой статье расскажу о разработке типового фреймворка для тестирования API – на Python, с нуля, шаг за шагом. В итоге получим полностью готовый тестовый фреймворк – надеюсь, с его помощью вы сможете сделать тестовое задание для собеседования или просто улучшить ваш уже действующий тестовый фреймворк.
В прошлой части мы поговорили про эволюцию DETR. А это значит, что сегодня самая пора поговорить про другие варианты исполнения архитектуры и их нюансы.
А теперь о том, что происходило в последнее время на других ресурсах.
Развёртывание ПО, или деплой (deploy) — этап в разработке, в Devops в целом, это действия, которые делают ПО готовым к использованию. Если вы умеете в грамотный деплой, масштабирование и управление конвейерами (CI/CD), то ваш софт будет конкурентоспособным.
В предыдущих статьях мы рассказали, как создать фотогалерею с собственной поисковой системой [1,2]1. Но где нам найти изображения для нашей галереи? Нам придется вручную искать источники «хороших» изображений, а затем вручную проверять, является ли каждое изображение «хорошим». Можно ли автоматизировать обе эти задачи? Ответ — да.
Недавно на математический основах информатики в университете мы проходили задачу сетевого планирования, с помощью которой можно смоделировать процесс производства изделий. Мне была интересна данная тема и я решила поделиться с вами, как решить задачу сетевого планирования с использованием языка Python.
DVD – как много в этой аббревиатуре! Уверен, что вы наверняка помните такое явление, как ларьки и палатки с дисками, исчезнувшие только к началу 2010-х годов (по крайней мере так было в столице). В один из таких ларьков в конце 2009-го заглянул десятилетний я, внимание которого тут же привлекла коробка с надписью «3D Studio Max 2010»... Аниматором я, увы, так и не стал, однако интерес к области визуальных эффектов сохранился надолго.
В статье рассматриваются возможности контекстного менеджера языка Python, его роль в управлении ресурсами и обеспечении безопасного выполнения кода. Приводятся примеры использования контекстных менеджеров для работы с файлами, базами данных, потоками и сетевыми соединениями. Также обсуждается возможность создания собственных контекстных менеджеров и приводятся примеры простого и асинхронного контекстных менеджеров.