Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Применение искусственного интеллекта и машинного обучения в задачах промышленности не настолько распространено, как в других сферах и отраслях экономики вроде банкинга, ритейла, телекома. При этом современные промышленные объекты часто генерируют и собирают большое количество данных, а методы машинного обучения обеспечивают эффективное использование этих данных для решения различных устоявшихся типовых задач: выявления неисправностей и отказов, прогноз качества продукции, определения остаточного срока службы оборудования и многих других.
В этом материале мы воспроизведём на Python модель BG-NBD (Beta Geometric Negative Binomial Distribution). Она может быть использована для прогнозирования повторных заказов клиентов, чтобы определить пожизненную ценность клиентов (LTV — lifetime value). Она также может быть использована для прогнозирования оттока.
В этой статье мы кратко рассмотрим технологию, которая лежит в основе ChatGPT — эмбеддинги, и напишем простой интеллектуальный поиск по кодовой базе проекта.
Еще совсем недавно 3D-печать будоражила умы читателей, завораживала своей перспективностью, открывала широкие возможности для творчества, но была недоступна для простого обывателя. Сейчас 3D-принтер можно легко приобрести на китайском рынке по приемлемой цене. Технология 3D-печати не прекратила своего развития: меняются способы печати, появляются более скоростные модели принтеров, но сама технология стала привычным для нас явлением.
В этой статье, а вернее целой истории, я хотел бы поделиться своим путем становления в качестве разработчика на Python и рассказать о некоторых идеях и советах, которые я усвоил за это время. Начиная с моих первых проектов и заканчивая моей текущей деятельностью, я поделюсь накопленным опытом и попробую осветить проблемы, с которыми я столкнулся на своем пути. Кого-то данная статься вдохновит начать свой собственный путь в разработке, а кому-то будет интересно прочитать историю успешного кейса входа и закрепления в ИТ.
В этом посте мы реализуем с нуля GPT всего в 60 строках numpy. Затем мы загрузим в нашу реализацию опубликованные OpenAI веса обученной модели GPT-2 и сгенерируем текст.
Наверное странная идея - нарисовать диаграмму миграций проекта Django. Вроде как - а зачем? Но если у Вас некий достаточно большой и достаточно старый проект, да еще над которым постоянно работает хотя бы небольшая команда - разобраться в зависимостях миграций становится уже сложновато. Ну и так - полезно понять, как можно автоматически выбрать из проекта структуру миграций и построить из них диаграмму. Причем - автоматически. Что бы можно было это делать в любой нужный момент.
Расскажу о том, как в задаче прогнозирования временных рядов появляются стратегии, какими они бывают и как воспользоваться стратегией в библиотеке ETNA.
При разработке проектов, и, особенно, распределенных приложений, возникает необходимость использования некоторых частей приложения в качестве отдельных модулей. Например скомпилированные классы для gRPC, модули для работы с БД, и многое другое, могут применяться в неизменном виде в кодовой базе десятка микросервисов. Оставив за скобками копипасту, как «хорошую» плохую практику. Можно рассмотреть git submodules, однако, такое решение не очень удобно тем, что, во‑первых, нужно предоставлять разработчикам доступ к конкретным репозиториям с кодовой базой, во‑вторых, нужно понимать, какой коммит надо забрать себе, и в‑третьих установка зависимостей для кода, включенного в проект как субмодуль, остается на совести разработчика. Менеджеры пакетов (pip, или, лучше, poetry), умеют разрешать зависимости из коробки, без лишних действий, и, в целом, использование менеджера пакетов значительно проще, чем работа с субмодулем. В статье рассмотрим, как организовать реестр пакетов в GitLab, а также различные подводные камни, поджидающие на пути к удобной работе с ним.
Недавно в комментариях к одному из постов в Варим ML меня спросили, какие навыки и знания нужны, чтобы у нас работать. Вопрос на самом деле очень важный - без правильного ответа невозможно нормально выстроить процессы найма и развития сотрудников. Можно быстро набросать дефолтный список - питончик, ML/DL, докер, и на этом закончить, но я решил зарыться в вопрос пообстоятельнее. Конечно, существуют самые разные родмапы, но лично мне они кажутся излишне общими, а я захотел поразмышлять именно про те скиллы, которые необходимы для работы в Цельсе, а главное про их необходимый уровень.
Суть задачи: по кадастровому номеру участка необходимо получить несколько вариантов проектов застройки участка в формате .DWG (Autocad) со всеми расчетными показателями застройки.Low-code подход реализуется через использование Airtable в качестве базы данных и системы управления очередями заданий. Frontend реализуется на базе публичной страницы в Notion и чат-бота Telegram.
Хотел бы поделиться с Вами своим обьяснением того, как понять фикстуры и как начать их использовать в своих проектах, тем самым начать радоваться жизни)Вероятно, даже продвинутый QA Automation найдет что-то новое, но моя цель обьяснить на пальцах эту тему начинающим, ибо именно в ней зачастую происходят затыки.
В этой статье мы подробнее рассмотрим объект многоточия, где можно использовать его в повседневной практике программиста, и какие известные пакеты Python используют его.
Математические модели распространения огня являются важной частью борьбы с пожарами. Модели могут помочь определить, где может начаться пожар, как быстро он будет распространяться (и в каком направлении), и сколько тепла он будет выделять; эти важные подсказки могут спасти жизни и существенно сократить финансовые потери. Очень идеализированный лесной пожар может быть представлен с помощью простого клеточного автомата.
Пользовательские API-интерфейсы могут быть реализованы на Python с использованием нескольких фреймворков. В этой статье остановимся на особенностях работы с одним из самых популярных вариантов — платформой FastAPI, библиотеки которой активно используют такие технологические гиганты, как Microsoft, Netflix, Uber. Речь пойдет о некоторых расширенных функциях FastAPI, которые могут использовать в своих проектах те разработчики, у кого уже есть базовые знания о фреймворке.
Включаемся в работу над проектом за 4 консольных команды
Вы когда-нибудь видели лендинги курсов по программированию? Наверняка да, ведь времена «мидлов за полгода» и «джунов за три месяца» отгремели совсем недавно. Страницы многих успешных эдтех-компаний здесь похожи. За обещаниями золотых гор на золотых песках удаленки мы вглядываемся в светлые лица преподавателей, и после reasons to believe нас встречает… программа обучения. Двух-, а то и трехуровневая простыня со всеми важными темами. И чем их больше, тем лучше: ведь на другой чаше весов уже поджидает стоимость курса.
Говорят, что для овладения каким-либо навыком необходимо 10 000 часов. Я не буду спорить, правда это или нет. Я скажу вам, что даже если это правда, я не уверен, что это применимо к Python!
В этой статье я объясню, почему я считаю, что вы не можете по-настоящему освоить Python, но я также скажу вам, почему я считаю, что это нормально. Я дам ряд практических советов, которые вы сможете использовать, чтобы постоянно совершенствовать свои знания Python.
Наконец, в конце я поделюсь небольшим случаем из моего личного опыта работы с Python, подкрепляющий мои тезисы.
Открытое ПО сегодня привлекает повышенное внимание с разных сторон — разработки, бизнеса, технологий. Естественно, и его безопасность стоит отдельным вопросом, ведь злоумышленники также активно интересуются open source и создают угрозы для безопасной разработки. Доставка вредоносного кода через сторонние зависимости стала одним из опасных способов заражения. По нашим прогнозам, этот тренд будет только усиливаться.
Однажды тимлид поставил передо мной задачу реализовать механизм взаимодействия пользователя через веб-интерфейс с микросервисами через единую точку входа с использованием FastAPI и RabbitMQ. Спешу поделиться с тобой, мой читатель, тем, что у меня получилось. По мере повествования дам пояснения по представленному коду. И, да, сделаю интересные отступления по вопросам валидации и хранения, в т.ч. приватных, данных.