Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Выгорание операторов — распространенная проблема в кол-центрах. По разным оценкам, текучесть персонала здесь достигает 40–45%, а средний срок работы составляет 8–12 месяцев. Это приводит к дополнительным расходам на обучение, росту нагрузки на команду и снижению качества сервиса. При этом заметные изменения в поведении сотрудников обычно фиксируются слишком поздно — когда проблема уже стала системной
Поэтому представляю вашему вниманию первую и единственную open-source реализацию Flash Attention 2 на Triton с поддержкой Linux и Windows, Turing-Blackwell архитектур (теперь можно работать в Google Colab и Kaggle), гомо и гетерогенных кластеров, опциональным детерминизмом, а также возможностью ручной кастомизации ядер (kernels) для более гибкой настройки под каждую GPU архитектуру отдельно. Более подробно о том как это устроено и не только — далее в статье.
Полноценных open-source-альтернатив, которые закрыли бы все наши потребности, не нашлось. Поэтому мы решили создать свой «мультитул» — low-code-фреймворк для генерации гетерогенных Airflow DAG с незамысловатым названием dag_generator. Цель этой статьи — поделиться опытом внедрения подобного инструмента. Генерация выполняется по старинке, так что про ИИ здесь пока ничего не найдете.
В данной статье мы рассмотрим комбинированные и ансамблевые методы библиотеки Imbalanced Learn.
В статье представлена модель управления температурой и давлением на примере промышленного горизонтального автоклава периодического действия, используемого в индустрии по производству кормов для домашних животных.
В этой статье я собрал девять самых частых задач из live-coding этапов собеседований на Python — от декораторов и замыканий до GIL и паттернов. Эти задачи регулярно встречаются в компаниях разного уровня, и их знают те, кто часто участвует в найме.
Последние пять лет я веду, пожалуй, самый длинный и упорный личный проект в своей жизни создаю собственную макрос-клавиатуру с нуля: от логотипа до электроники и ПО.
У вас когда-нибудь была мечта, которая поднимает посреди ночи, и вы на цыпочках идете через спящий дом к компьютеру — посмотреть, что показывает ваш телескоп? Поймал ли он 3I/ATLAS, с джетами или без, как слабую точку или как большой объект с необычно яркой комой? Эти ночи — мои будни уже 3 месяца. И сегодня я расскажу, как любитель-астроном исследует самый необычный межзвездный объект за всю историю человечества:
LLM-модели хорошо решают задачи диалога, но имеют одно ключевое ограничение: отсутствие встроенной долговременной памяти. Модель опирается только на текущий контекст.
В реальной повседневной работе от нейронной сети мне нужна одна простая и приземлённая вещь — поиск аномалий в данных. И вот с этим нейросети действительно справляются. Более того, для этого у них есть специальный инструмент — автоэнкодер.
По данным Информационного телеграфного агентства России (ТАСС), в 2024 году в России было потеряно и найдено более 168 тысяч домашних животных, что на 17% больше, чем годом ранее. Для повышения шансов найти питомца живым и невредимым, помимо самостоятельных поисков, можно обратиться к волонтёрским сообществам и специализированным сервисам – именно волонтеры помогают найти более 90% пропавших животных. Одним из ключевых онлайн‑ресурсов, аккумулирующих информацию о пропаже и находке животных, является Pet911.
В свежем релизе фреймворк усиливает совместимость между СУБД, упрощает работу с email, улучшает ORM, добавляет удобства в шаблонах и снижает риск «выгорания» первичных ключей.
Сейчас мы переживаем бум ИИ-сервисов, которые за небольшую плату могут реализовать любые ваши творческие фантазии без необходимости глубокого понимания технических принципов их работы. Но я из тех, кто любит «ковыряться под капотом», поэтому в качестве проекта «выходного дня» я решил реализовать сервис машинного закадрового перевода видео с помощью общедоступных моделей с локальным запуском. А что из этого вышло – читайте далее.
После взрывного роста интереса к ИИ я всё чаще вижу, что PyTorch заметно опережает TensorFlow по популярности. Оба фреймворка очень мощные и позволяют дата-сайентистам решать самые разные задачи, включая обработку естественного языка, что вновь подогрело интерес к глубокому обучению.
Рост числа параметров в LLM и других нейронных сетях создает проблему того, что запускать их может все меньшее количество людей. Это связано с тем, что запуск больших моделей требует наличие мощного оборудования, недоступное всем.
Для решения этой проблемы разрабатываются различные виды оптимизации, позволяющие запускать крупные нейронные сети (в частности LLM) на менее мощном оборудовании. Одним из наиболее популярных подходов оптимизации LLM является квантизация.
В прошлой статье я рассуждал о том, почему Fortran в 2025 году всё ещё жив и даже растет в рейтингах. В комментариях справедливо заметили: «Философия — это хорошо, но как это применить современному разработчику? Зачем мне Fortran, если я пишу на Python?».
В статье полный разбор архитектуры, алгоритмы scoring, примеры кода и расчёт экономики.Один STT-сервис дал 60-70% точности на специфической лексике (топонимы, названия улиц, профессиональные термины). Два сервиса параллельно + взвешенное голосование + AI-fusion для спорных случаев дали 95%+ точности. Время обработки 5-8 секунд.
От «обезьяньей» работы к Smart-анализу: как правильно готовить данные для моделей.Что такое Exploratory Data Analysis и как избежать основных ошибок при его выполнении.
В прошлом квартале мы задались вопросом: как оценить эффект от времени, которое пользователь проводит в нашем разделе, на Retention Rate (RR)? Казалось бы, решение очевидное: провести A/B-тест, но на поверку всё оказалось не так просто. В статье разберем, как у нас получилось определить эффект, с какими сложностями столкнулись в процессе и как нам помог метод Generalized Propensity Score.
В прошлых материалах я упоминал, что работаю преподавателем в центре для одарённых школьников. Центров этих в районе десятка по стране. И до этого года все они работали на базе общей информационной системы.