Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Большая статья для тех, кто, как и я, споткнулся об asyncio и так не разгадал до конца "магию" событийного цикла. Попробовал распутать этот клубок через подробный рассказ (в как можно более доступной форме) о внутренних механизмах Линукса и самого asyncio, которые лежат в основе событийного. К концу статьи, надеюсь, магия исчезнет, а останется ясное понимание фундамента. Погружаемся
Если у вас когда‑либо был опыт деплоя нейросетки, вы знаете, что обучение — это полдела, а вот добиться шустрого инференса — целое искусство. Часто обученная в PyTorch модель дает замечательные метрики, но стоит попытаться запустить её в приложении начинаются всякие проблемки.Одно из решений, которое часто выручает — ONNX и ONNX Runtime.
Мой агент на Llama 3.1 8B в третий раз спросил, как меня зовут. Я представился 200 сообщений назад. Контекст переполнился — начало разговора уехало. Большие контексты не спасают: дорого, «Lost in the Middle», локально не влезает. Суммаризация теряет детали. Я сделал по-другому — три типа внешней памяти: Redis для фактов, ChromaDB для семантического поиска, файлы для документов. Контекст маленький, память большая. Внутри — код на Python и грабли, на которые я уже наступил.
Сегодня Telegram выкатил Bot API версии 9.4. На первый взгляд обновление кажется небольшим, но оно кардинально меняет подход к визуалу ботов. Наконец-то мы получили инструменты для нормального UX/UI дизайна!Давайте разберем, что нам приготовил Павел Дуров и команда в этот раз.
Этот cказ о том, как мне надоело приглядываться к раскладке клавиатуры, и я решил проблему попутно освоив нестолько фичей в программировании и не толькоЕсть одна маленькая, но изматывающая боль, знакомая почти каждому, кто много печатает. Ты смотришь на экран, пальцы уверенно бегут по клавиатуре, мысль сформулирована… и на выходе получается:
В статье собран небольшой теоретический материал и несколько практических кейсов применения генетического программирования для символьной регрессии (и не только) на простых, наглядных задачах. Надеюсь, это поможет начинающим исследователям и практикам быстрее разобраться в теме или просто будет познавательно.
Следующим шагом я хотел приступить к описанию ядра атома в рамках описанной ранее теории. Но по комментариям и при личном обсуждении, пришёл к выводу, что теория хоть и является минималистичной, но всё-же, интуитивному её пониманию сильно мешает то, что всё обсуждение строится в 3+1 геометрических измерениях.
Недавно мне предстояло написать реализацию LogisiticRegression для одного проекта в Школе 21, так что было необходимо разложить всё по полочкам и разобраться в бинарной классификации в целом. Хочу поделиться также этой информацией здесь, потому что не нашла статьи, которая была бы понятна и обширна лично в моём случае.
Как менялся сон моих детей: анализ 5 лет накопленных данных За 5 лет жена скрупулезно записывала сон наших дочерей. Я взял эти данные и проанализировал: как меняется сон с возрастом, сколько спят дети на самом деле, и правда ли нормы ВОЗ работают. Оказалось, что наши дети спят по-разному, но оба — в пределах нормы.
От голосовых на 5 минут к тексту за 30 секунд: инструмент для батч-расшифровки голосовых: от локального Whisper до бесплатного Groq API, с автоопределением форматов и CLI
Когда данных мало, а домен сильно отличается, предобученные модели перестают работать. Я попробовал вместо сбора и ручной разметки генерировать дорожные дефекты поверх реальных кадров.Что получилось, где работает, где нет и сколько это стоит - в статье.
tl dr:- итеративный constitution.md- промтинг фич с помощью md-файлов- git-ветки для контроля урона- вычитка документации вручную- авто-кодинг с код-ревью финального mr.На скрине случайно получившаяся сегодня гармоничная композицияи из того, чем себя можно занять, пока агент в IDE коптит.
Сегодня мы создадим простейшую игру для Telegram, представляющую собой Mini App. В нашем случае, это игра с «бизнес-уклоном». Часто клиенты хотят бонус, но раздавать по запросу бонусы не очень правильно. Гораздо лучше, чтобы пользователи его «заработали», выполнив какие-то действия, взаимодействуя с вашим брендом. А что может быть веселее небольшой игры с призом в конце.В нашей игре нужно будет прыгать по платформам и собирать звёзды.
А теперь о том, что происходило в последнее время на других ресурсах.
Один из проектов, который я запустил после новогодних праздников - это AI ассистент по подбору подарков (с интегрированным вишлистом) ДарийНа его примере я хочу рассказать о протоколе AG-UI и на практике показать, как разработать ChatGPT-like агентное приложение за пару минут.
Каждый раз, когда кто-то говорит про запуск LLM, возникает вопрос: "А где взять GPU?" Облачные GPU стоят денег, локальные видеокарты стоят ещё больших денег, а бесплатные GPU-тиры исчезают быстрее, чем появляются.Но что если можно запустить полноценного AI-ассистента вообще без GPU?
Машинное обучение обычно ассоциируется с датасетами, метриками и бесконечными экспериментами в ноутбуках. Но в какой-то момент для нас ML перестал быть абстрактной технологией - и стал маршрутом. Причём буквально. Эта история о том, как модели, гипотезы и пара неочевидных решений привели нас не только к рабочему результату, но и на самый настоящий остров Парамушир (северные Курилы).
Я чувстовал себя клоуном подключая 5ю библиотеку для написания устойчивого к ошибкам API клиента. После этого я написал библиотеку объединяющую все воедино. Мотивация и история архитектурных решений.
Современное машиностроительное производство требует высокой точности планирования технологических процессов и оценки трудоёмкости операций. Эти оценки напрямую влияют на формирование себестоимости, планирование загрузки оборудования и назначение цен на продукцию и услуги.
Давайте честно. Все эти конференции про "Цифровые Двойники" и "AI на производстве" - это красиво только на слайдах в PowerPoint.В реальности, когда ты приходишь к главному технологу и просишь данные для обучения модели (например, чтобы предсказывать прогар футеровки), происходит одно из двух: