Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
One of the maintainers of Knave has been tracking Python performance data for a while and a recent upgrade of one of their machines meant they now had more info across different hardware. This post compares their performance test across Apple M1 & M5, Zen2 and Cascade Lake chips.
Сегодня я хочу поделиться конкретными архитектурными паттернами и приёмами, которые я неоднократно использовал в своих проектах. Они не усложняют простые задачи, но делают жизнь в долгосрочной перспективе несоизмеримо легче.
В данной статье опишу пример тестирования gRPC и подготовки авто-тестов на примере программного обеспечения для сбора, обработки и передачи данных в системах промышленной автоматизации.
Home Assistant позиционирует себя как локальную систему. Но я столкнулся с ситуацией, когда локальная функция (Samba) не работает из-за облачного сбоя. При этом я вообще не использую облако. В статье описываю как обошёл эту проблему за 5 минут, когда за день разобрался в причине.
Сегодня я расскажу про библиотеку Python River, которая позволяет обучать модели машинного обучения в потоковом режиме. В классическом варианте мы собираем весь датасет целиком, делим на обучающую и тестовую выборки, обучаем модель, измеряем качество — и внедряем в прод. Здорово, если данных немного и они разом доступны. А если данные льются непрерывно?
На практике большинство ошибок происходит не на этапе запуска эксперимента, а при анализе результатов. Чаще всего причина в том, что статистический метод выбирается «по привычке», без учёта типа метрики и свойств данных. В этой статье я собрал практическую логику выбора методов анализа A/B-тестов. Без углубления в теорию, но с пониманием, почему в одном случае работает χ², а в другом t-test может привести к неверным выводам.
В первой части мы написали базовый поиск gRNA с фильтрацией по GC-составу. Работает, но тупо: все кандидаты в диапазоне 40-60% считаются равнозначными. В реальности это не так. Сегодня добавим систему скоринга — будем ранжировать gRNA по качеству, учитывая позицию нуклеотидов и особенности U6-промотора.
Это Docker-шаблон для Python + Poetry, рассчитанный на реальную работу, а не учебные примеры: воспроизводимое окружение, удобный dev-workflow, отдельные сборки под прод, dev, Jupyter и AI-инструменты.
А теперь о том, что происходило в последнее время на других ресурсах.
Рассмотрим две проблемы при изучении иностранного языка. Это освоение грамматики и увеличение словарного запаса. Они не единственные, но важные. Про способы погружения в грамматику, на языке оригинала, можно прочитать в моей статье: «Уроки французского и пересоздание данных для изучения иностранного языка с помощью обучающей программы «L'école»»
Несколько лет назад я наткнулся на статью про CRISPR‑Cas9 и домашние биолаборатории — люди буквально у себя дома экспериментировали с редактированием генов. Я бэкенд‑разработчик, биологию последний раз открывал в школе, но желание разобраться никуда не делось. В этой статье разберёмся, как работает CRISPR на минимальном уровне, и напишем CLI‑утилиту на Python для поиска потенциальных guide RNA — «наводчиков» для молекулярных ножниц Cas9.
ㅤ
Есть числа, которые полезно знать программистам на Python. Насколько быстро добавляется элемент в список? Как насчет открытия файла? Это занимает меньше миллисекунды? Если ваш алгоритм зависит от производительности, какую структуру данных вы должны использовать? Сколько памяти занимает число с плавающей запятой, один символ или пустая строка? Насколько быстр FastAPI по сравнению с Django?
В этой статье я расскажу, как мы разработали универсальный автогенератор тестов, который, как нам кажется, подходит для любого сервиса API. Ну и, конечно, расскажу, как он работает и как мы его планируем развивать.
quad_rag_core — лёгкое Python-ядро для локального RAG, которое автоматически отслеживает изменения в папках, индексирует их в Qdrant и поддерживает эмбеддинги в актуальном состоянии.
Yep, DOOM in Django. That's right. Django LiveView streams ViZDoom as 100x100 pixel frames mapped to 10,000 divs at 60 FPS, sustaining about 600000 divs per second reliably.
PyPI strengthened security and organization features in 2025, adding trusted publishing, attestations, improved 2FA, malware response, and organization management enhancements.
Важным фактором для удобства расследований и анализа является формат самих аудит-логов. Он должен быть структурированным и единообразным вне зависимости от части системы, где происходит события. Но чтобы начать анализировать события, которые происходят в системе, нужно сначала эти события получить и передать анализатору — SIEM-системе.
Когда дело касается локального запуска, думаю, далеко немногие из нас запускают модели в BF16 через vLLM на Nvidia H100. А значит, все эти красивые результаты по бенчмаркам на практике, вероятнее всего, очень далеки от того, что мы получим на практике.И я решил это проверить.
Сегодня я расскажу об своем pet проекте по объяснению правил для настольных игр. Цель данного проекта — понять, как можно собрать RAG агента без использования больших библиотек.