Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Мы рады сообщить о доступности октябрьского обновления расширения Python для Visual Studio Code. Вы можете загрузить расширение Python из Marketplace или установить его прямо из галереи расширений в Visual Studio Code. Если у вас уже установлено расширение Python, вы также можете получить последнее обновление, перезапустив код Visual Studio. Подробнее о поддержке Python в Visual Studio Code вы можете узнать из документации.
В этом релизе мы рассмотрели 97 проблем, в том числе нативное редактирование Jupyter Notebooks, кнопку для запуска файла Python в терминале, а также улучшения «линтинга» (linting) и импорта с помощью Python Language Server. Полный список улучшений приведен в нашем журнале изменений.
Одной из интересных и популярных (особенно перед разными юбилеями) задач является «раскрашивание» старых черно-белых фотографий и даже фильмов. Тема это достаточно интересная, как с математической, так и с исторической точки зрения. Мы рассмотрим реализацию этого процесса на Python, который любой желающий сможет запустить на своем домашнем ПК.
Home Assistant – популярное приложение с открытым исходным кодом для организации умного дома. Первый опыт автора в работе с Home Assistant основывается на попытке интеграции в него ‘умной рисоварки‘. Автор постарается описать основные компоненты и возможности данного приложения, с которыми ему привелось пошагово познакомиться. Статья является в чем-то обзором, в чем-то руководством для желающих начать свое знакомство с Home Assistant.
Тем, у кого мало свободного времени, советую пропустить присказку – первую главу – и перейти сразу ко второй. Вам нужно знать только, что работать мы будем с умной китайской рисоваркой от Xiaomi.
Если вы закончили школу уже во времена ЕГЭ, то вам известно, что все задания в нём имеют набор стандартных формулировок и упорядочены по типам. С одной стороны, это облегчает подготовку к экзамену: школьник уже знает, что нужно делать в задании, даже не читая его условия. С другой, любое изменение порядка вопросов может вызвать у него проблемы. Грубо говоря, на результат начинает больше влиять то, насколько человек довёл решения до автоматизма, а не то, как он рассуждает. Экзамен становится похож на работу скрипта.
Заключительная статья из серии как вызывать C/C++ из Python3, перебрал все известные способы как можно это сделать. На этот раз добрался до boost. Что из этого вышло читаем ниже.
Сегодня ночью вышел Python 3.8 и аннотации типов получили новые возможности:
Если вы ещё не знакомы с аннотациями типов, рекомендую обратить внимание на мои предыдущие статьи (начало, продолжение)
И пока все переживают о моржах, я хочу кратко рассказать о новинках в модуле typing
Работая QA инженером, я разрабатывал систему автотестестирования. Столкнулся с рядом проблем:
Когда я только начинал работать над своей текстовой игрой, решил, что одной из её главных фич должны стать красивые художественные описания действий героев. Отчасти хотел «сэкономить», поскольку в графику не умел. Экономии не получилось, зато получилась Python библиотека (github, pypi) для генерации текстов с учётом зависимости слов и их грамматических особенностей.
В данной статье мы осуществим попытку проникновения в самое сердце "кровавого энтерпрайза" — в бухгалтерию. Вначале мы проведем исследование главной книги, счетов и баланса, выявим присущие им свойства и алгоритмы. Используем Python и технологию Test Driven Development. Здесь мы займемся прототипированием, поэтому вместо базы данных будем использовать базовые контейнеры: списки, словари и кортежи. Проект разрабатывается в соответствии с требованиями к проекту Empire ERP.
В статье описывается исследование, проведенное с целью проверки утверждения центральной предельной теоремы о том, что сумма N независимых и одинаково распределенных случайных величин, отобранных практически из любого распределения, имеет распределение, близкое к нормальному. Однако, прежде чем мы перейдем к описанию исследования и более подробному раскрытию смысла центральной предельной теоремы, не лишним будет сообщить, зачем вообще проводилось исследование и кому может быть полезна статья.
В первую очередь, статья может быть полезна всем начинающим постигать основы машинного обучения, в особенности если уважаемый читатель еще и на первом курсе специализации «Машинное обучение и анализ данных».
Я много писал о проектах компьютерного зрения и машинного обучения, таких как системы распознавания объектов и проекты распознавания лиц. У меня также есть опенсорсная библиотека распознавания лиц на Python, которая как-то вошла в топ-10 самых популярных библиотек машинного обучения на Github. Всё это привело к тому, что новички в Python и машинном зрении задают мне много вопросов.
В данной статье я расскажу о моём аддоне к блендеру, о причинах, побудивших меня к его созданию, процессе разработки и об «успехе» на YouTube.
В настоящее время более чем вероятно, что вам придется написать HTTP-клиент для вашего приложения, который должен будет общаться с другим HTTP-сервером. Повсеместность REST API делает HTTP VIP персоной. Вот почему знание шаблонов оптимизации является обязательным условием.
Оригинальная статья: Julien Danjou – Python and fast HTTP clients
В Python есть много HTTP-клиентов (библиотек); наиболее широко используемый и простой в работа с requests. Это стандарт де-фактора в наши дни.