Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Измеряем пропускную способность веб-серверов и каркасов приложений на Python.
Недавно на Kaggle закончилось соревнование iMaterialist Challenge (Furniture), задачей в котором было классифицировать изображения на 128 видов мебели и предметов быта (так называемая fine-grained classification, где классы очень близки друг к другу).
В этой статье я опишу подход, который принес нам с m0rtido третье место, но прежде, чем переходить к сути, предлагаю воспользоваться для решения этой задачи естественной нейросетью в голове и разделить стулья на фото ниже на три класса.
В статье создадим веб-приложение, которое в бэкграунде делает запросы к API со случайными шутками каждые 15 секунд, затем отправляет шутку пользователю через WebSocket. Для реализации приложения будем использовать: django, celery и channels. Celery для бэкграунд задач. Channels для передачи сообщений через WebSocket.
Если описать в паре предложений по какому принципу работают сортировки обменами, то:
Цель соревнования — создать методику оценки кредитоспособности заемщиков, не имеющих кредитной истории. Что выглядит довольно благородно — заемщики этой категории часто не могут получить никакой кредит в банке и вынуждены обращаться к мошенникам и микрозаймам. Интересно, что заказчик не выставляет требований по прозрачности и интерпретируемости модели (как это обычно бывает в банках), можно использовать что угодно, хоть нейросети.
Сегодня, как всегда, поговорим о создании мобильных приложений с фреймворком Kivy и Python. В частности речь пойдет о создании мобильного клиента для одного Интернет ресурса и публикации его в Google Play. Я расскажу, с какими проблемами может столкнуться новичок и опытный разработчик, которые решили попробовать себя в кроссплатформенной разработке с Kivy, что можно и чего лучше не делать в программировании с Python for Android.