Собрали в одном месте самые важные ссылки
читайте нас в Twitter
В первой части поста мы начали реализацию с нуля GPT всего в 60 строках numpy.
Во завершающей части мы загрузим в нашу реализацию опубликованные OpenAI веса обученной модели GPT-2 и сгенерируем текст.
Этот проект родился после беседы с друзьями об инвестициях в недвижимость. Обсуждали, как выгодно купить квартиру, паркинг или келлер под сдачу и выгодно ли вообще.
Я решил проанализировать рынок продажи и аренды гаражей и парковочных мест своего города. Квартиры – слишком дорогие объекты для инвестиций, а что касается гаражей и паркингов – тут «вход» гораздо меньше, и на аренду вроде бы всегда есть спрос.
В тот момент, когда нам потребовалась функция импорта данных, я подумал - ну уж эту-то функциональность я запросто найду в списке пакетов для Django. Действительно, на популярном сайте поиска пакетов, я нашел замечательный пакет Django Data Wizard делающий судя по описанию, как раз то, что мне было нужно.
Как думает искусственный интеллект? Попробовать разобраться в его логике можно в игре от менторов AI Talent Hub и студентов ИТМО «Отгадай слово». За два месяца в нее сыграли уже более 107 тысяч уникальных пользователей, а количество подписчиков одноименного телеграм-канала увеличилось до 5 000. Что делает игру такой популярной, как проект окупился без затрат на продвижение и рекламы на сайте, а также почему при работе с ИИ не избежать ошибок? Рассказываем в статье.
Публикуем девятую, заключительную часть перевода руководства по модулю asyncio в Python. Здесь вы найдёте разделы исходного материала с 23 по 26.
Вокруг так много фреймворков для инференса нейронных сетей, что сложно понять, какой именно подойдет тебе лучше всего. Я решил, что реализую одну и ту же задачу на нескольких разных технологиях. Так и родился этот репозиторий.
Python - элегантный язык программирования. Но у него есть слабые стороны. Иногда Python не так элегантен, как должен быть.Например, когда нам нужно выйти из вложенных циклов.
Применение искусственного интеллекта и машинного обучения в задачах промышленности не настолько распространено, как в других сферах и отраслях экономики вроде банкинга, ритейла, телекома. При этом современные промышленные объекты часто генерируют и собирают большое количество данных, а методы машинного обучения обеспечивают эффективное использование этих данных для решения различных устоявшихся типовых задач: выявления неисправностей и отказов, прогноз качества продукции, определения остаточного срока службы оборудования и многих других.
В этом материале мы воспроизведём на Python модель BG-NBD (Beta Geometric Negative Binomial Distribution). Она может быть использована для прогнозирования повторных заказов клиентов, чтобы определить пожизненную ценность клиентов (LTV — lifetime value). Она также может быть использована для прогнозирования оттока.
В этой статье мы кратко рассмотрим технологию, которая лежит в основе ChatGPT — эмбеддинги, и напишем простой интеллектуальный поиск по кодовой базе проекта.
Еще совсем недавно 3D-печать будоражила умы читателей, завораживала своей перспективностью, открывала широкие возможности для творчества, но была недоступна для простого обывателя. Сейчас 3D-принтер можно легко приобрести на китайском рынке по приемлемой цене. Технология 3D-печати не прекратила своего развития: меняются способы печати, появляются более скоростные модели принтеров, но сама технология стала привычным для нас явлением.
В этой статье, а вернее целой истории, я хотел бы поделиться своим путем становления в качестве разработчика на Python и рассказать о некоторых идеях и советах, которые я усвоил за это время. Начиная с моих первых проектов и заканчивая моей текущей деятельностью, я поделюсь накопленным опытом и попробую осветить проблемы, с которыми я столкнулся на своем пути. Кого-то данная статься вдохновит начать свой собственный путь в разработке, а кому-то будет интересно прочитать историю успешного кейса входа и закрепления в ИТ.
В этом посте мы реализуем с нуля GPT всего в 60 строках numpy. Затем мы загрузим в нашу реализацию опубликованные OpenAI веса обученной модели GPT-2 и сгенерируем текст.
Наверное странная идея - нарисовать диаграмму миграций проекта Django. Вроде как - а зачем? Но если у Вас некий достаточно большой и достаточно старый проект, да еще над которым постоянно работает хотя бы небольшая команда - разобраться в зависимостях миграций становится уже сложновато. Ну и так - полезно понять, как можно автоматически выбрать из проекта структуру миграций и построить из них диаграмму. Причем - автоматически. Что бы можно было это делать в любой нужный момент.
Расскажу о том, как в задаче прогнозирования временных рядов появляются стратегии, какими они бывают и как воспользоваться стратегией в библиотеке ETNA.
При разработке проектов, и, особенно, распределенных приложений, возникает необходимость использования некоторых частей приложения в качестве отдельных модулей. Например скомпилированные классы для gRPC, модули для работы с БД, и многое другое, могут применяться в неизменном виде в кодовой базе десятка микросервисов. Оставив за скобками копипасту, как «хорошую» плохую практику. Можно рассмотреть git submodules, однако, такое решение не очень удобно тем, что, во‑первых, нужно предоставлять разработчикам доступ к конкретным репозиториям с кодовой базой, во‑вторых, нужно понимать, какой коммит надо забрать себе, и в‑третьих установка зависимостей для кода, включенного в проект как субмодуль, остается на совести разработчика. Менеджеры пакетов (pip, или, лучше, poetry), умеют разрешать зависимости из коробки, без лишних действий, и, в целом, использование менеджера пакетов значительно проще, чем работа с субмодулем. В статье рассмотрим, как организовать реестр пакетов в GitLab, а также различные подводные камни, поджидающие на пути к удобной работе с ним.