Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Во второй части нашего похода за сокетами мы от теоретического их рассмотрения перейдем к практике. Мы разберемся, чем плохи блокирующие сокеты, как решить проблему одновременной обработки соединений с помощью процессов, и почему потоки использовать лучше. Попутно разберемся с проблемами синхронизации потоков и зачем нужен GIL. В конце нам должно стать понятно, что с процессами и потоками нужно уметь работать, но никогда не стоит их использовать в реальных проектах, а применять вместо них системный вызов select и асинхронность.
В этой статье я хочу поделиться недавно открытым для себя инструментарием, позволяющим создавать кроссплатформенные автотесты для приложений на QT.
Любому Python-проекту может пойти на пользу надёжный и стабильный конвейер непрерывной интеграции (Continuous Integration, CI). В рамках таких конвейеров выполняется сборка приложений, запуск тестов, проверка кода линтерами, контроль качества программ, анализ уязвимости приложений. Правда, построение CI-конвейеров занимает много времени, требует выполнения действий, которые, сами по себе, никакой пользы не приносят. Этот материал написан для тех Python-программистов, которым нужен полнофункциональный, настраиваемый CI-конвейер, основанный на GitHub Actions. Этот конвейер оснащён всеми мыслимыми инструментами, подключён ко всем необходимым сервисам, а подготовить его к работе можно всего за несколько минут.
Дабы исчерпать до дна тему сокетов в Python я решил изучить все возможные способы их использования в данном языке. Чтобы всех их можно было испытать и попробовать на зуб, были созданы 19 версий простого эхо-сервера: от примитивного использования класса socket до asyncio
Когда речь идет об анализе данных, результаты хороши лишь настолько, насколько хороши данные. И даже если на вашей стороне миллионы значений данных, и вы вооружены искусственным интеллектом и машинным обучения, вы можете не использовать эти данные в полной мере (возможно, это сыграет даже во вред вашей организации). Плохие данные приводят к принятию некачественных решений.Поэтому вам необходимо очистить и отформатировать ваши данные – взять их под контроль, чтобы они были готовы к последующим процессам.Вот тут-то и приходит на помощь выпас данных.
Три недели осталось до старта нашей конференции. Мы нашли самых огненных спикеров и собрали 25 докладов, так или иначе связанных с python-разработкой. Придумали классную идею для афтерпати и пошили самые красивые (по версии девочек из IT-People) футболки. Пора познакомить вас со всем этим. И что же там такое?
В последнее время занимался оптимизацией скорости инференса нейросетей, поэтому сегодня расскажу о них. И не просто о нейросетях, а о нейросетях в продакшене.
Ранее, у меня уже был опыт использования Helpdesk систем, но по разным причинам они не были внедрены у нас на предприятии. Хорошая возможность научится программировать, подумал я, и преступил к написанию собственного helpdesk’a.
Разберемся с начала, что это за статья зачем она и для кого. Пришлось мне в рамках хакатона "Поколение ИТ" писать бота для телеги.
Но готового решения для пагинации, которое бы нам подходило мы не нашли. Поэтому было принято решение изобретать велосипед. Решение моих товарищей было максимально странным, брать количество записей и перебирать их в цикле от 1 до N (конца, записей), но данная идея сразу была отброшена. Поэтому предоставляю вашему вниманию наше творчество, которое мы изобрели.
Привет, земляне. Многие из вас слышали про набор библиотек FFmpeg, а некоторые его активно используют. Я из их числа, но я не поклонник взаимодействия с приложением посредством текстовых команд, поэтому я предлагаю собственное приложение с графическим интерфейсом для взаимодействия с FFmpeg. Теперь, не нужно изучать текстовый интерфейс, чтобы произвести пакетное конвертирование изображений и видео в GIF-файлы высокого качества.
N-граммы N-граммы – это статистические модели, которые предсказывают следующее слово после N-1 слов на основе вероятности их сочетания. Например, сочетание I want to в английском языке имеет высокую вероятностью, а want I to – низкую. Говоря простым языком, N-грамма – это последовательность n слов.
Извлечение информации означает создание структурированных данных из неструктурированного текста. На практике задача может выглядеть так: нужно автоматически создать запись в календаре исходя из текста письма, как на рисунке ниже.
Недавно Google изменил политику по отношению к доступу к аккаунту из неизвестных источников. Давно приходили предупреждения, но я до последнего надеялся, что обойдется и не коснется меня. Наивный.Докатилось до меня где-то в середине июня. Однажды, смотря логи одного из моих проектов, наткнулся на ошибку авторизации при попытке отправки электронного письма.
В популярной в свое время игре Papers, please! игрок выполняет роль таможенника, проверяющего документы по все более усложняющимся правилам. Главная игровая механика - проверка документов на соответствие всем нормам, таким как верная дата и место выдачи, соответствие имени и фамилии человека на всех документах, срок действия визы, наличие человека в “черных” списках и тому подобное.
В этой статье я хочу рассказать о подходе который основан на поиске схожих изображений. Зачем подготавливать дополнительнительные данные если почти все основные характеристики некоторых товаров, например одежда, можно отобразить на изображении. Смотреть подробнее + пример
Сравнение эмпирического распределения переменной по разным группам — распространённая задача Data Science. Эта задача часто возникает при поиске причинно-следственных связей, когда нужно оценить качество рандомизации.
Что самое сложное в написании статьи для Хабра? Конечно же сесть и начать писать! А потом вовремя остановиться. Ну а на третьем месте — во всяком случае для меня — стоит загрузка уже готовой статьи на Хабр. Про новый редактор я тактично промолчу, а старый в принципе весьма неплох: статью в markdown можно скопировать в него почти без изменений. Но вот с добавлением картинок есть пара нюансов.