Собрали в одном месте самые важные ссылки
читайте авторский блог
Многим приходилось сталкиваться с необходимостью анализа большого количества данных при помощи Python по запросам начальства или коллег. Однотипные запросы поступают с определенной периодичностью, и не составляет труда подставить новые данные в свой код и провести анализ. Но иногда из-за определенной нагрузки не всегда хочется заниматься таким анализом. Намного проще сделать скрипт с графическим интерфейсом, чтобы сам заказчик для анализа данных мог нажать пару кнопок и получить желаемый результат. Тем более, можно изначально вложить в интерфейс столько «хотелок» заказчика для анализа, сколько будет душе угодно.
В студенческие годы я написал на заказ много парсеров магазинов и социальных сетей. Со временем парсеры усложнялись и из скриптов превращались в полноценные веб-приложения c базой данных и Rest API. В статье описан шаблон веб-приложения, который использую для создания парсеов.
Перед вами вторая часть из серии материалов, состоящей из двух публикаций. Здесь я предлагаю практическое руководство по архитектуре ML-проекта, освоение которого позволит вам оценить качество автоматического реферирования (суммаризации) текстов в той области, в которой вы работаете.
В декабре 2021 года Github объявил, что открывает общий доступ к точной навигации по коду для всех публичных и приватных репозиториев с Python на сайте GitHub.com. Точную навигацию в коде обеспечивают стековые графы, новый фреймвввооорк с открытым исходным кодом, созданный в Github и позволяющий устанавливать правила привязки имен для языка программирования при помощи декларативного предметно-ориентированного языка (DSL). Стековые графы позволяют генерировать данные о навигации по стеку для конкретного репозитория, не требуя при этом какого-либо участия в конфигурировании со стороны владельца репозитория и не вмешиваясь в процесс сборки или другие задания, связанные с непрерывной интеграцией. В этом посте будет подробно рассказано, как работают стековые графы, и как с их помощью достигаются такие результаты.
Дело в том, что гугл объявил о закрытии Universal Analytics и полном переходе на Google Analytics 4. Погуглив стало ясно что инфы про новую аналитику крайне мало, а о её работе с питоном инфы в принципе нет.
Первая проблема связанна с тем, что гугл аналитика предназначена для того что бы отслеживать сайты посредством встраивания трекера во фронтэнд или приложение с SDK.
Рассмотрим все возможные способы обратной сортировки списков в Python
В первой части мы разобрались, зачем вообще могут быть нужны скруглённые дорожки и каплевидные подводы, а также реализовали необходимые для этого плагины. Эта же часть будет посвящена подстройке полученных плагинов под версию KiCad 6, в которой, к сожалению, пока полноценного функционала для скругления не появилось.
Оперативное информирование клиентов, когда их достаточно много для ручного обзвона, но недостаточно много для подключения массового сервиса, вроде sms.ru (на самом деле сервис хорош, но недавняя политика некоторых мобильных операторов создала определённые финансовые сложности ввиду заградительных тарифов на использование услуг sms-рассылок с/без использования имён) родило потребность в применении независимого инструмента.
Чтобы облегчить эту задачу, я, не программист, написал скрипт, который стал дополнительным инструментом управления постоянно меняющимися цифрами наличия комплектующих. Об этом скрипте и о том, как мы анализируем число оборудования на складе, пишу под катом.
yarsync - Yet Another Rsync - предназначен для синхронизации данных между несколькими устройствами, более точно - между файловыми системами в Unix-подобных средах. yarsync обладает интерфейсом, похожим на git, и является Python-обёрткой вокруг программы rsync. Программа доступна под свободной лицензией GPL v3.0 на github (я автор).
Сегодня хочу поделиться с вами хорошими новостями, которые связаны с производительностью python в грядущем релизе 3.11 и то, что нас ожидает в будущем!
Достаточно долгое время существенных ускорений в CPython не наблюдалось, были определённые улучшения в некоторых последних версиях, но особо на итоговую производительность, даже в специальных задачах это не cлишком сильно влияло, не говоря о задачах общего назначения, которые и составляют основную работу.
Очень часто я на просторах интернета натыкаюсь на такой вопрос: «А какое готовое решение по детекции лиц лучше всего использовать?» Так вот, я отобрал 5 решений с Github, которые показались мне хорошими, относительно новыми и лёгкими в использовании, и хотел бы сравнить их между собой. Всем, кому интересно, что из этого вышло, добро пожаловать под кат!
В статье покажем, как алгоритмы компьютерного зрения помогают решить задачу автоматического определения объема круглого леса в лесовозе по фотографии. Пройдем путь от идеи до прототипа. Расскажем, какие были выбраны решения и почему.
На прошлом уроке я рассказал о том, как повысить контрастность изображения и как выделить на изображении особе точки. Затем мы попробовали работать с найденными особыми точками. В частности, превратили эти точки в список координат и попытались объединить близкие точки в одну, так как у нас получилось очень много точек рядом. В статье был предложен следующий алгоритм: при составлении списка, перед добавлением в список очередной точки проверять, находится ли она близко от последней, если да, то добавлять в тот же список, если нет, то начинать новый список. Только проблема в том, что обход точек был через развертку, и могло получиться так, что близкие точки попадают в разные списки. Поэтому объединение точек получилось «криво». Сегодня мы исправим этот недочет.
Существует множество сервисов по подбору синонимов, но они редко справляются с терминами, которые содержат в себе более одного слова. Для подбора синонимов для более сложных выражений могут помочь Викиданные.
Detection frameworks have become increasingly fast and accurate, as seen in our last post on YOLOv1; however, most detection methods are still constrained to a small set of objects like 20 classes in PASCAL VOC and 80 classes in Microsoft COCO.
В июле 2020 года компания OpenAI выпустила свою модель машинного обучения третьего поколения, GPT-3, ориентированную на генерирование текстов. Тогда я понял, что мир уже не будет прежним. Эта модель задела меня за живое. Те системы такого рода, что выходили раньше, у меня подобных ощущений не вызывали. И вот ещё неожиданность — о новой системе начали говорить мои друзья и коллеги, в принципе интересующиеся технологиями, но не особенно обращающие внимание на последние достижения машинного обучения (Machine Learning, ML) и искусственного интеллекта (Artificial Intelligence, AI). Об этом написала даже газета Guardian. А если точнее — статью написала сама модель, а в Guardian её лишь отредактировали и опубликовали. Совершенно очевидно то, что выход модели GPT-3 стал поворотным моментом в развитии искусственного интеллекта.
В предыдущей статье я рассказал о том, как получить данные о персональных тренировках из набора FIT-файлов, которые создаются при использовании носимых устройств (фитнес-браслеты, часы, смартфоны, велокомпьютеры).
Мы продолжаем нашу серию статей, связанных с байесовскими методами, один из которых — Байесовские Сети Доверия (БСД). Теоретическую основу БСД вы можете найти в этойстатье.
В этой статье мы сначала вкратце вспомним теорию. Дальше будет, что называется, только хардкор: на примере данных “Титаника” мы будем строить БСД.
В 2015 году, когда я пришёл на своё текущее место работы, мне было непривычно от необыкновенной свободы действий. Буквально, на новом месте можно было проявить весь творческий потенциал как DevOps-евангелиста. Мне нравилось выстраивать процессы, автоматизировать рутину, делать разработку удобной. Больше всего я люблю оптимизации, а больше всего ненавижу - рутину.
Эта история одной боли и попытке не просто "принять обезболивающее", а реально излечить её. Поэтому готовьтесь переварить лонгрид.